Solvers Principles and Architecture (SPA)

Part 1

Anatomy of SAT Solvers

Master Sciences Informatique (Sif) September, 2019

Rennes

Khalil Ghorbal
khalil.ghorbal@inria.fr

Outline

(1) Propositional Logic
(2) CNF Transformation
(3) DPLL-based Algorithms

Unit Propagation
Branching and Learning
(4) Conclusion
(5) Reduction Examples

Logic in a Nut Shell

Formally, a logic is a pair of syntax and semantics.

Syntax

- Alphabet: set of symbols
- Expressions: sequences of symbols
- Rules: identifying well-formed expressions

Semantics

- Meaning: what is meant by well-formed expressions
- Rules: infer the meaning from subexpressions

Alphabet

Alphabet

 Implication
i th propositional symbol

Expressions

Expression

Sequence of symbols from the alphabet.
$\left\langle\left(, a_{1}, \wedge, a_{2},\right)\right\rangle$
$\left(a_{1} \wedge a_{2}\right)$
$\left\langle(),, \vee, a_{1}, \neg, a_{2}\right\rangle$
() $\vee a_{1} \neg a_{3}$

We want to further restrict the allowed combinations.

Well-Formed Formulas

Well-formed formulas (wff) are defined inductively
S : the set of expressions with a single propositional symbol

$$
S=\left\{0,1, s_{1}, s_{2}, \ldots\right\}
$$

W : the set of wffs is freely generated from S as follows
$w::=s|(w)| \neg w|w \wedge w| w \vee w|w \longrightarrow w| w \longleftrightarrow w$

So far we only manipulated symbols or wooden pieces!

Semantics with Truth Table

One can interpret all expressions in W over the set $\{0,1\}$ by giving an interpretation of the basic constructors that generate W.
A symbol s can be either 0 or 1 .

s	\neg
0	1
1	0

Semantics with Truth Table

One can interpret all expressions in W over the set $\{0,1\}$ by giving an interpretation of the basic constructors that generate W.
A symbol s can be either 0 or 1 .

s	\neg
0	1
1	0

s_{1}	s_{2}	\wedge
0	0	0
0	1	0
1	0	0
1	1	1

s_{1}	s_{2}	\vee
0	0	0
0	1	1
1	0	1
1	1	1

s_{1}	s_{2}	\rightarrow
0	0	1
0	1	1
1	0	0
1	1	1

Interpretation Domain

Intuition

Given a context, that is a truth value for each propositional symbol, we can determine the truth value of any wff in our context.

Boolean Algebra

- Field structure: $\mathbb{Z} / 2 \mathbb{Z}=\mathcal{B}=\{0,1\}$
- " + ": 0 is the identity, 1 is its own inverse: $1+1=0$
- " \times ": standard multiplication operator, where 1 is the identity element

Transfer Functions

- context: $\sigma: S \rightarrow \mathcal{B}$. A valuation of all propositional symbols
- σ satisfies $\sigma(0)=0$ and $\sigma(1)=1$
- Define $\llbracket \rrbracket_{\sigma}: W \rightarrow \mathcal{B}$
- $\llbracket \rrbracket_{\sigma}$ is well-defined since W is freely generated

Semantics of the Transfer Functions

$$
\begin{aligned}
\llbracket s \rrbracket_{\sigma} & =\sigma(s) \\
\llbracket \neg w \rrbracket_{\sigma} & =1+\llbracket w \rrbracket_{\sigma} \\
\llbracket w_{1} \wedge w_{2} \rrbracket_{\sigma} & =\llbracket w_{1} \rrbracket_{\sigma} \times \llbracket w_{2} \rrbracket_{\sigma} \\
\llbracket w_{1} \vee w_{2} \rrbracket_{\sigma} & =\llbracket w_{1} \rrbracket_{\sigma}+\llbracket w_{2} \rrbracket_{\sigma}+\llbracket w_{1} \rrbracket_{\sigma} \times \llbracket w_{2} \rrbracket_{\sigma} \\
\llbracket w_{1} \rightarrow w_{2} \rrbracket_{\sigma} & =1+\llbracket w_{1} \rrbracket_{\sigma}+\llbracket w_{1} \rrbracket_{\sigma} \times \llbracket w_{2} \rrbracket_{\sigma} \\
\llbracket w_{1} \longleftrightarrow w_{2} \rrbracket_{\sigma} & =1+\llbracket w_{1} \rrbracket_{\sigma}+\llbracket w_{2} \rrbracket_{\sigma}
\end{aligned}
$$

Definitions

- σ : context, valuation, truth assignment
- σ satisfies w if and only if $\llbracket w \rrbracket_{\sigma}=1$
- w is satisfiable if there exists σ such that σ satisfies w
- w is unsatisfiable if there is no σ such that σ satisfies w :

$$
\forall \sigma .\left(\llbracket w \rrbracket_{\sigma}=0\right)
$$

Example:

- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right)$ is satisfiable
- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right) \wedge\left(s_{1} \leftrightarrow s_{2}\right)$ is unsatisfiable

Definitions

- σ : context, valuation, truth assignment
- σ satisfies w if and only if $\llbracket w \rrbracket_{\sigma}=1$
- w is satisfiable if there exists σ such that σ satisfies w
- w is unsatisfiable if there is no σ such that σ satisfies w :

$$
\forall \sigma .\left(\llbracket w \rrbracket_{\sigma}=0\right)
$$

Example:

- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right)$ is satisfiable
- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right) \wedge\left(s_{1} \leftrightarrow s_{2}\right)$ is unsatisfiable

Definitions

- σ : context, valuation, truth assignment
- σ satisfies w if and only if $\llbracket w \rrbracket_{\sigma}=1$
- w is satisfiable if there exists σ such that σ satisfies w
- w is unsatisfiable if there is no σ such that σ satisfies w :

$$
\forall \sigma .\left(\llbracket w \rrbracket_{\sigma}=0\right) .
$$

Example:

- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right)$ is satisfiable
- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right) \wedge\left(s_{1} \leftrightarrow s_{2}\right)$ is unsatisfiable

Definitions

- σ : context, valuation, truth assignment
- σ satisfies w if and only if $\llbracket w \rrbracket_{\sigma}=1$
- w is satisfiable if there exists σ such that σ satisfies w
- w is unsatisfiable if there is no σ such that σ satisfies w :

$$
\forall \sigma .\left(\llbracket w \rrbracket_{\sigma}=0\right) .
$$

Example:

- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right)$ is satisfiable

Definitions

- σ : context, valuation, truth assignment
- σ satisfies w if and only if $\llbracket w \rrbracket_{\sigma}=1$
- w is satisfiable if there exists σ such that σ satisfies w
- w is unsatisfiable if there is no σ such that σ satisfies w :

$$
\forall \sigma .\left(\llbracket w \rrbracket_{\sigma}=0\right) .
$$

Example:

- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right)$ is satisfiable
- $\left(s_{1} \vee s_{2}\right) \wedge\left(\neg s_{1} \vee \neg s_{2}\right) \wedge\left(s_{1} \leftrightarrow s_{2}\right)$ is unsatisfiable

Implications as Satisfiability

Tautological Implication (w_{i} are wffs)

$$
w_{1}, \ldots, w_{n} \models w \quad \text { if and only if } \quad \forall \sigma .\left(\llbracket \wedge_{i} w_{i} \rrbracket_{\sigma}=1 \longrightarrow \llbracket w \rrbracket_{\sigma}=1\right)
$$

Every truth assignment that satisfies all w_{i} satisfies necessarily w Definitions

Implications as Satisfiability

Tautological Implication (w_{i} are wffs)

$$
w_{1}, \ldots, w_{n} \models w \quad \text { if and only if } \quad \forall \sigma .\left(\llbracket \wedge_{i} w_{i} \rrbracket_{\sigma}=1 \longrightarrow \llbracket w \rrbracket_{\sigma}=1\right)
$$

Every truth assignment that satisfies all w_{i} satisfies necessarily w

Definitions

- $\models w$ (or $1 \models w$): w is a tautology or w is valid - $W_{1} \sim W_{2}: W_{1}=W_{2}$ and $W_{2}=W_{1}$ (tautological equivalence)

Implications as Satisfiability

Tautological Implication (w_{i} are wffs)

$$
w_{1}, \ldots, w_{n} \models w \quad \text { if and only if } \quad \forall \sigma .\left(\llbracket \wedge_{i} w_{i} \rrbracket_{\sigma}=1 \longrightarrow \llbracket w \rrbracket_{\sigma}=1\right)
$$

Every truth assignment that satisfies all w_{i} satisfies necessarily w

Definitions

- $\models w$ (or $1 \models w$): w is a tautology or w is valid
- $w_{1} \sim w_{2}: w_{1} \models w_{2}$ and $w_{2} \models w_{1}$ (tautological equivalence)

Implications as Satisfiability

Tautological Implication (w_{i} are wffs)

$$
w_{1}, \ldots, w_{n} \models w \quad \text { if and only if } \quad \forall \sigma .\left(\llbracket \wedge_{i} w_{i} \rrbracket_{\sigma}=1 \longrightarrow \llbracket w \rrbracket_{\sigma}=1\right)
$$

Every truth assignment that satisfies all w_{i} satisfies necessarily w

Definitions

- $\models w$ (or $1 \models w$): w is a tautology or w is valid
- $w_{1} \sim w_{2}: w_{1} \models w_{2}$ and $w_{2} \models w_{1}$ (tautological equivalence)
- e.g. $s_{1} \rightarrow s_{2} \sim \neg s_{1} \vee s_{2}$

Proving Theorem with SAT

Tautological Implication as Satisfiability Problem
$w_{1}, \ldots, w_{n} \models w$ if and only if $\quad \wedge_{i} w_{i} \wedge \neg w$ is unsatisfiable

Example

- $s_{1}, s_{1}-s_{2}=s_{2}$ iff $s_{1} \wedge\left(s_{1} \rightarrow s_{2}\right) \wedge \neg s_{2}$ is unsat.
- $s, \neg s \neq(s \wedge \neg s)$ iff $s \wedge \neg s \wedge \neg(s \wedge \neg s)$ is unsat

Proving Theorem with SAT

Tautological Implication as Satisfiability Problem

$$
w_{1}, \ldots, w_{n} \models w \quad \text { if and only if } \quad \wedge_{i} w_{i} \wedge \neg w \quad \text { is unsatisfiable }
$$

Example

- $s_{1}, s_{1} \rightarrow s_{2} \models s_{2}$ iff $s_{1} \wedge\left(s_{1} \rightarrow s_{2}\right) \wedge \neg s_{2}$ is unsat.
- $s, \neg s \vDash(s \wedge \neg s)$ iff $s \wedge \neg s \wedge \neg(s \wedge \neg s)$ is unsat

Proving Theorem with SAT

Tautological Implication as Satisfiability Problem

$$
w_{1}, \ldots, w_{n} \models w \quad \text { if and only if } \quad \wedge_{i} w_{i} \wedge \neg w \quad \text { is unsatisfiable }
$$

Example

- $s_{1}, s_{1} \rightarrow s_{2} \models s_{2}$ iff $s_{1} \wedge\left(s_{1} \rightarrow s_{2}\right) \wedge \neg s_{2}$ is unsat.
- $s, \neg s \models(s \wedge \neg s)$ iff $s \wedge \neg s \wedge \neg(s \wedge \neg s)$ is unsat

Equivalence versus EquiSatisfiability

Recall (Tautological) Equivalence

$$
w_{1} \sim w_{2} \text { if and only if } \forall \sigma .\left(\llbracket w_{1} \rrbracket_{\sigma}=1 \longleftrightarrow \llbracket w_{2} \rrbracket_{\sigma}=1\right)
$$

Equisatisfiability does not imply tautological equivalence!

- $w_{1}:=s_{1} \wedge\left(s_{1} \leftrightarrow s_{2}\right)$ and $w_{2}:=s_{1}$
- $W_{1} \sim$ SAT W_{2} but $w_{1} \nsim w_{2}$

Equivalence versus EquiSatisfiability

Recall (Tautological) Equivalence

$$
w_{1} \sim w_{2} \text { if and only if } \forall \sigma .\left(\llbracket w_{1} \rrbracket_{\sigma}=1 \longleftrightarrow \llbracket w_{2} \rrbracket_{\sigma}=1\right)
$$

Equisatisfiability

$w_{1} \sim_{S A T} w_{2}$ if and only if $\quad\left(\exists \sigma . \llbracket w_{1} \rrbracket_{\sigma}=1\right) \longleftrightarrow\left(\exists \sigma . \llbracket w_{2} \rrbracket_{\sigma}=1\right)$

Equisatisfiability does not imply tautological equivalence!

- $w_{1}:=s_{1} \wedge\left(s_{1} \leftrightarrow s_{2}\right)$ and $w_{2}:=s_{1}$
- $w_{1} \sim$ SAT w_{2} but $w_{1} \nsim w_{2}$

Equivalence versus EquiSatisfiability

Recall (Tautological) Equivalence

$$
w_{1} \sim w_{2} \text { if and only if } \forall \sigma .\left(\llbracket w_{1} \rrbracket_{\sigma}=1 \longleftrightarrow \llbracket w_{2} \rrbracket_{\sigma}=1\right)
$$

Equisatisfiability

$$
w_{1} \sim_{S A T} w_{2} \text { if and only if } \quad\left(\exists \sigma . \llbracket w_{1} \rrbracket_{\sigma}=1\right) \longleftrightarrow\left(\exists \sigma . \llbracket w_{2} \rrbracket_{\sigma}=1\right)
$$

Equisatisfiability does not imply tautological equivalence!

- $w_{1}:=s_{1} \wedge\left(s_{1} \leftrightarrow s_{2}\right)$ and $w_{2}:=s_{1}$
- $w_{1} \sim_{S A T} w_{2}$ but $w_{1} \nsim w_{2}$

Outline

(1) Propositional Logic
(2) CNF Transformation
(3) DPLL-based Algorithms

Unit Propagation
Branching and Learning
4. Conclusion
(5) Reduction Examples

Definitions

- Literal: propositional symbol (atomic expression) or its negation
- Clause: disjunction of one or more literals
- Positive Occurrence: if the symbol occurs unnegated in a clause
- Negative Occurrence: if the symbol occurs negated in a clause

Definitions

- Literal: propositional symbol (atomic expression) or its negation
- Clause: disjunction of one or more literals
- Positive Occurrence: if the symbol occurs unnegated in a clause
- Negative Occurrence: if the symbol occurs negated in a clause

Conjunctive Normal Form (CNF)

An expression w is in CNF if and only if it has the form

$$
w=\bigwedge_{i} \bigvee_{j} \ell_{i j}
$$

- Each $\ell_{i j}$ is a literal
- Thus, a CNF is a conjunction of clauses

- 4 variable symbols: s_{1}, s_{2}, s_{3}, and s_{4}
- clause c_{1} (resp. c_{2}) has 2 (resp. 3) literals
- s_{3} is negative in c_{1} and positive in c_{2}

Converting to CNF

Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan's Laws and distributivity may increase the number of logical operations (Boolean gates) exponentially.

Example

- $w_{1}:=\left(s_{1} \wedge s_{2}\right) \vee\left(s_{3} \wedge s_{4}\right)$, by distributivity

Converting to CNF

Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan's Laws and distributivity may increase the number of logical operations (Boolean gates) exponentially.

Example

- $w_{1}:=\left(s_{1} \wedge s_{2}\right) \vee\left(s_{3} \wedge s_{4}\right)$, by distributivity
- $w_{1} \sim w_{2}:=\left(s_{1} \vee s_{3}\right) \wedge\left(s_{1} \vee s_{4}\right) \wedge\left(s_{2} \vee s_{3}\right) \wedge\left(s_{2} \vee s_{4}\right) \quad\left(2^{2}\right.$ clauses $)$
- Now $w_{1} \sim w_{2}$, and w_{2} in CNF, but w_{2} has 2^{n-1} clauses!
- We seek to avoid such exponential cost for the CNF reduction

Converting to CNF

Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan's Laws and distributivity may increase the number of logical operations (Boolean gates) exponentially.

Example

- $w_{1}:=\left(s_{1} \wedge s_{2}\right) \vee\left(s_{3} \wedge s_{4}\right)$, by distributivity
- $w_{1} \sim w_{2}:=\left(s_{1} \vee s_{3}\right) \wedge\left(s_{1} \vee s_{4}\right) \wedge\left(s_{2} \vee s_{3}\right) \wedge\left(s_{2} \vee s_{4}\right) \quad\left(2^{2}\right.$ clauses $)$
- $w_{1}:=\left(s_{1} \wedge s_{2}\right) \vee\left(s_{3} \wedge s_{4}\right) \vee\left(s_{5} \wedge s_{6}\right) \cdots \vee\left(s_{n} \wedge s_{n+1}\right)$
- Now $w_{1} \sim w_{2}$, and w_{2} in CNF, but w_{2} has 2^{n-1} clauses!
- We seek to avoid such exponential cost for the CNF reduction

Converting to CNF

Equivalent CNF is Exponential

Converting a wff w to an equivalent formula in CNF using De Morgan's Laws and distributivity may increase the number of logical operations (Boolean gates) exponentially.

Example

- $w_{1}:=\left(s_{1} \wedge s_{2}\right) \vee\left(s_{3} \wedge s_{4}\right)$, by distributivity
- $w_{1} \sim w_{2}:=\left(s_{1} \vee s_{3}\right) \wedge\left(s_{1} \vee s_{4}\right) \wedge\left(s_{2} \vee s_{3}\right) \wedge\left(s_{2} \vee s_{4}\right) \quad\left(2^{2}\right.$ clauses $)$
- $w_{1}:=\left(s_{1} \wedge s_{2}\right) \vee\left(s_{3} \wedge s_{4}\right) \vee\left(s_{5} \wedge s_{6}\right) \cdots \vee\left(s_{n} \wedge s_{n+1}\right)$
- Now $w_{1} \sim w_{2}$, and w_{2} in CNF, but w_{2} has 2^{n-1} clauses!
- We seek to avoid such exponential cost for the CNF reduction

Converting to CNF

Tseytin Transformation [Tseytin 1970]

Trick: Converting an expression by adding new propositional variables and substituting for nested operations. We avoid the exponential cost at the price of losing the (tautological) equivalence.

Example

Converting to CNF

Tseytin Transformation [Tseytin 1970]

Trick: Converting an expression by adding new propositional variables and substituting for nested operations. We avoid the exponential cost at the price of losing the (tautological) equivalence.

Example

$$
w:=\underbrace{(\underbrace{\left.s_{1} \wedge s_{2}\right)}_{p_{1}} \vee \underbrace{\left(s_{3} \wedge s_{4}\right)}_{p_{2}}}_{p_{3}}
$$

- $p_{1} \leftrightarrow\left(s_{1} \wedge s_{2}\right)$
- $p_{2} \leftrightarrow\left(s_{3} \wedge s_{4}\right)$
- $p_{3} \leftrightarrow p_{1} \vee p_{2}$
- $w \sim_{S A T}\left(p_{1} \leftrightarrow\left(s_{1} \wedge s_{2}\right)\right) \wedge\left(p_{2} \leftrightarrow\left(s_{3} \wedge s_{4}\right)\right) \wedge\left(p_{3} \leftrightarrow p_{1} \vee p_{2}\right) \wedge p_{3}$

Converting to CNF

Tseytin Transformation [Tseytin 1970]

- $p \leftrightarrow\left(\ell_{1} \wedge \ell_{2}\right) \sim\left(\neg p \vee \ell_{1}\right) \wedge\left(\neg p \vee \ell_{2}\right) \wedge\left(\neg \ell_{1} \vee \neg \ell_{2} \vee p\right)$
(CNF)
- $p \leftrightarrow\left(\ell_{1} \vee \ell_{2}\right) \sim \neg p \leftrightarrow\left(\neg \ell_{1} \wedge \neg \ell_{2}\right)$
- $p \leftrightarrow \ell \sim p \leftrightarrow \ell \wedge 1$
- Each operator (gate) adds at most 3 clauses.
- An expression with m operators becomes a CNF
- Linear increase in size

Converting to CNF

Tseytin Transformation [Tseytin 1970]

- $p \leftrightarrow\left(\ell_{1} \wedge \ell_{2}\right) \sim\left(\neg p \vee \ell_{1}\right) \wedge\left(\neg p \vee \ell_{2}\right) \wedge\left(\neg \ell_{1} \vee \neg \ell_{2} \vee p\right)$
- $p \leftrightarrow\left(\ell_{1} \vee \ell_{2}\right) \sim \neg p \leftrightarrow\left(\neg \ell_{1} \wedge \neg \ell_{2}\right)$
- $p \leftrightarrow \ell \sim p \leftrightarrow \ell \wedge 1$
- Each operator (gate) adds at most 3 clauses.
- An expression with m operators becomes a CNF

$$
\begin{aligned}
& \text { - with at most } 3 m+1, O(m) \text {, clauses, and } \\
& \text { - an additional } m \text { propositional variables }
\end{aligned}
$$

Converting to CNF

Tseytin Transformation [Tseytin 1970]

- $p \leftrightarrow\left(\ell_{1} \wedge \ell_{2}\right) \sim\left(\neg p \vee \ell_{1}\right) \wedge\left(\neg p \vee \ell_{2}\right) \wedge\left(\neg \ell_{1} \vee \neg \ell_{2} \vee p\right)$
- $p \leftrightarrow\left(\ell_{1} \vee \ell_{2}\right) \sim \neg p \leftrightarrow\left(\neg \ell_{1} \wedge \neg \ell_{2}\right)$
- $p \leftrightarrow \ell \sim p \leftrightarrow \ell \wedge 1$
- Each operator (gate) adds at most 3 clauses.
- An expression with m operators becomes a CNF
- with at most $3 m+1, O(m)$, clauses, and
- an additional m propositional variables

Converting to CNF

Tseytin Transformation [Tseytin 1970]

- $p \leftrightarrow\left(\ell_{1} \wedge \ell_{2}\right) \sim\left(\neg p \vee \ell_{1}\right) \wedge\left(\neg p \vee \ell_{2}\right) \wedge\left(\neg \ell_{1} \vee \neg \ell_{2} \vee p\right)$
- $p \leftrightarrow\left(\ell_{1} \vee \ell_{2}\right) \sim \neg p \leftrightarrow\left(\neg \ell_{1} \wedge \neg \ell_{2}\right)$
- $p \leftrightarrow \ell \sim p \leftrightarrow \ell \wedge 1$
- Each operator (gate) adds at most 3 clauses.
- An expression with m operators becomes a CNF
- with at most $3 m+1, O(m)$, clauses, and
- an additional m propositional variables
- Linear increase in size

DiMaCS Standard

- Each propositional variable is represented by a positive integer
- A negative integer refers to negative occurrences
- Clauses are given as sequences of integers separated by spaces
- A 0 terminates the clause

Example:

- $\left(s_{1} \vee \neg s_{3}\right) \wedge\left(\neg s_{2} \vee s_{3} \vee s_{4}\right)$
- 1 -3 0 -2 340

DiMaCS Standard

- Each propositional variable is represented by a positive integer
- A negative integer refers to negative occurrences
- Clauses are given as sequences of integers separated by spaces
- A 0 terminates the clause

Example:

- $\left(s_{1} \vee \neg s_{3}\right) \wedge\left(\neg s_{2} \vee s_{3} \vee s_{4}\right)$
- 1 -30 -2 340

Outline

(1) Propositional Logic

(2) CNF Transformation
(3) DPLL-based Algorithms

Unit Propagation Branching and Learning
(4) Conclusion
(5) Reduction Examples

EquiSAT CNF Conversion

Tseytin Transformation

Let w be a wff expression (a.k.a. Boolean function) of size n. Then, using Tseytin Transformation, w can be converted, in polynomial time, into an equisatisfiable expression w^{\prime} in CNF.

So, one may assume that we already have a CNF to begin with.

SAT Decision Problem

Given a well-formed formula w as an input, if there exists a σ that satisfies w return SAT (with σ), otherwise return UNSAT.

Brute Force Algorithm

Example

$$
\begin{aligned}
s_{1} & \wedge\left(s_{2} \vee \neg s_{1}\right) \wedge\left(s_{3} \vee \neg s_{2}\right) \\
s_{1} & s_{2}
\end{aligned} \quad s_{3} \| ~ s_{1} \quad \wedge \quad\left(\left(s_{2} \quad \vee \quad \neg s_{1}\right) \wedge\left(s_{3} \vee \vee \quad \neg s_{2}\right)\right)
$$

Brute Force Algorithm

Example

$$
s_{1} \wedge\left(s_{2} \vee \neg s_{1}\right) \wedge\left(s_{3} \vee \neg s_{2}\right)
$$

	s_{1}	s_{2}	s_{3}	s_{1}	\wedge	$\left(\left(s_{2}\right.\right.$	\vee	$\left.\neg s_{1}\right)$	\wedge	$\left(s_{3}\right.$	\vee

Brute Force Algorithm

Example

$$
s_{1} \wedge\left(s_{2} \vee \neg s_{1}\right) \wedge\left(s_{3} \vee \neg s_{2}\right)
$$

	s_{1}	s_{2}	s_{3}	s_{1}	\wedge	$\left(\left(s_{2}\right.\right.$	\vee	$\left.\neg s_{1}\right)$	\wedge	$\left(s_{3}\right.$	\vee	$\left.\left.\neg s_{2}\right)\right)$
(1)	0	0	0		0		1	1	1		1	1
(2)	0	0	1		0		1	1	1		1	1
(3)	0	1	0		0		1	1	0		0	0
(4)	0	1	1		0		1	1	1		1	0
(5)	1	0	0		0		0	0	0		1	1
(6)	1	0	1		0		0	0	0		1	1
(7)	1	1	0		0	1	0	0		0	0	

Brute Force Algorithm

Example

$$
s_{1} \wedge\left(s_{2} \vee \neg s_{1}\right) \wedge\left(s_{3} \vee \neg s_{2}\right)
$$

	s_{1}	s_{2}	s_{3}	s_{1}	\wedge	$\left(\left(s_{2}\right.\right.$	\vee	$\left.\neg s_{1}\right)$	\wedge	$\left(s_{3}\right.$	\vee	$\left.\left.\neg s_{2}\right)\right)$
(1)	0	0	0		0		1	1	1		1	1
(2)	0	0	1		0		1	1	1		1	1
(3)	0	1	0		0		1	1	0		0	0
(4)	0	1	1		0		1	1	1		1	0
(5)	1	0	0		0		0	0	0		1	1
(6)	1	0	1		0		0	0	0		1	1
(7)	1	1	0		0		1	0	0		0	0
(8)	1	1	1		1		1	0	1		1	0

SAT Facts

- Brute force algorithm: exponential complexity:
- 2^{n} cases for n propositional symbol
- SAT is the first problem to be proven to be NP-complete [Cook 1971]
- SAT solves any decision problem in NP (that is why we call it "complete")
- No known Polynomial time algorithm for solving SAT (otherwise $\mathrm{P}=\mathrm{NP}$)
- Yet, modern SAT Solvers are arguably efficient, why?

SAT Facts

- Brute force algorithm: exponential complexity:
- 2^{n} cases for n propositional symbol
- SAT is the first problem to be proven to be NP-complete [Cook 1971]
- SAT solves any decision problem in NP (that is why we call it "complete")
- No known Polynomial time algorithm for solving SAT (otherwise $\mathrm{P}=\mathrm{NP}$)
- Yet, modern SAT Solvers are arguably efficient, why?

SAT Facts

- Brute force algorithm: exponential complexity:
- 2^{n} cases for n propositional symbol
- SAT is the first problem to be proven to be NP-complete [Cook 1971]
- SAT solves any decision problem in NP (that is why we call it "complete")
- No known Polynomial time algorithm for solving SAT (otherwise $\mathrm{P}=\mathrm{NP}$)
- Yet, modern SAT Solvers are arguably efficient, why?

SAT Facts

- Brute force algorithm: exponential complexity:
- 2^{n} cases for n propositional symbol
- SAT is the first problem to be proven to be NP-complete [Cook 1971]
- SAT solves any decision problem in NP (that is why we call it "complete")
- No known Polynomial time algorithm for solving SAT (otherwise $P=N P$)
- Yet, modern SAT Solvers are arguably efficient, why?

SAT Facts

- Brute force algorithm: exponential complexity:
- 2^{n} cases for n propositional symbol
- SAT is the first problem to be proven to be NP-complete [Cook 1971]
- SAT solves any decision problem in NP (that is why we call it "complete")
- No known Polynomial time algorithm for solving SAT (otherwise $\mathrm{P}=\mathrm{NP}$)
- Yet, modern SAT Solvers are arguably efficient, why?

Satisfiability-Preserving Transformations

- Pure literal rule or affirmative-negative rule
- Unit propagation or 1-literal rule
- Resolution rule or rule for eliminating literals (atomic expressions)

```
DP Algorithm
Iteratively apply the rules till reducing the problem to a unique clause
    - if the clause has the form s \\negs the problem is unsat
    - otherwise, the problem is sat
```


Satisfiability-Preserving Transformations

- Pure literal rule or affirmative-negative rule
- Unit propagation or 1-literal rule
- Resolution rule or rule for eliminating literals (atomic expressions)

DP Algorithm

Iteratively apply the rules till reducing the problem to a unique clause

- if the clause has the form $s \wedge \neg s$ the problem is unsat
- otherwise, the problem is sat

Pure literal i.e. appears only positively or only negatively, ℓ say
Delete all clauses containing that literal

- A clause containing ℓ has the form $\ell \vee w$
- $\left(\ell \vee w_{1}\right) \wedge \cdots\left(\ell \vee w_{m}\right) \wedge w^{\prime} \quad \sim S A T \quad w^{\prime} \quad\left(w^{\prime}\right.$ has no ℓ in it $)$
- Augment σ such that $\llbracket \ell \rrbracket_{\sigma}=1$

Example of Preprocessing with Pure Literal Rule

$(1$ and 7$)$	$(\overline{2})$	$(\overline{4}$ and $\overline{5})$
$1 \vee 2$	$1 \vee 2$	$1 \vee 2$
$1 \vee 3 \vee 8$	$1 \vee 3 \vee 8$	$1 \vee 3 \vee 8$
$\overline{2} \vee \overline{3} \vee 4$	$\overline{2} \vee \overline{3} \vee 4$	$\overline{2} \vee \overline{3} \vee 4$
$\overline{4} \vee 5 \vee 7$	$\overline{4} \vee 5 \vee 7$	$\overline{4} \vee 5 \vee 7$
$\overline{4} \vee 6 \vee 8$	$\overline{4} \vee 6 \vee 8$	$\overline{4} \vee 6 \vee 8$
$\overline{5} \vee \overline{6}$	$\overline{5} \vee \overline{6}$	$\overline{5} \vee \overline{6}$
$7 \vee \overline{8}$	$7 \vee \overline{8}$	$7 \vee \overline{8}$
$7 \vee \overline{9} \vee 10$	$7 \vee \overline{9} \vee 10$	$7 \vee \overline{9} \vee 10$

\leadsto SAT! $\sigma=\{1,7, \overline{2}, \overline{4}, \overline{5}\}$ (with anything for $\{6,8\}$)

Unit Propagation

Unit clause is a clause with only one literal, ℓ say
A CNF containing a unit clause ℓ has the form

$$
\ell \wedge\left(\ell \vee w_{1}\right) \wedge\left(\neg \ell \vee w_{2}\right) \wedge w_{3}
$$

Remove all the clauses containing ℓ

- $\ell \wedge\left(\ell \vee w_{1}\right) \wedge \cdots \wedge\left(\ell \vee w_{m}\right) \wedge w^{\prime} \quad \sim_{S A T} \quad w^{\prime}$

Remove all instances of $\neg \ell$ from all the clauses

- $\ell \wedge\left(\neg \ell \vee w_{1}\right) \wedge \cdots \wedge\left(\neg \ell \vee w_{m}\right) \wedge w^{\prime} \quad \sim S A T \quad w_{1} \wedge \cdots \wedge w_{m} \wedge w^{\prime}$
- Augment σ such that $\llbracket \ell \rrbracket_{\sigma}=1$

Resolution Rule

If ℓ or its negation do not appear in the wff w, then

$$
(\ell \vee a) \wedge(\neg \ell \vee b) \wedge w \quad \sim S A T \quad \underbrace{(a \vee b)}_{\text {resolvent }} \wedge w
$$

Generalizing to several clauses:

Converting back to a CNF

Resolution Rule

If ℓ or its negation do not appear in the wff w, then

$$
(\ell \vee a) \wedge(\neg \ell \vee b) \wedge w \quad \sim S A T \quad \underbrace{(a \vee b)}_{\text {resolvent }} \wedge w
$$

Generalizing to several clauses:

$$
\bigwedge_{i}\left(\ell \vee a_{i}\right) \wedge \bigwedge_{j}\left(\neg \ell \vee b_{j}\right) \wedge w \quad \sim S A T \quad\left(\bigwedge_{i} a_{i} \vee \bigwedge_{j} b_{j}\right) \wedge w
$$

Converting back to a CNF

Resolution Rule

If ℓ or its negation do not appear in the wff w, then

$$
(\ell \vee a) \wedge(\neg \ell \vee b) \wedge w \quad \sim S A T \quad \underbrace{(a \vee b)}_{\text {resolvent }} \wedge w
$$

Generalizing to several clauses:

$$
\bigwedge_{i}\left(\ell \vee a_{i}\right) \wedge \bigwedge_{j}\left(\neg \ell \vee b_{j}\right) \wedge w \quad \sim_{S A T} \quad\left(\bigwedge_{i} a_{i} \vee \bigwedge_{j} b_{j}\right) \wedge w
$$

Converting back to a CNF

$$
\left(\bigwedge_{i} a_{i} \vee \bigwedge_{j} b_{j}\right) \wedge w \quad \sim\left(\bigwedge_{i} \bigwedge_{j}\left(a_{i} \vee b_{j}\right)\right) \wedge w
$$

Resolution Rule (cont'd)

To summarize, if ℓ or its negation do not appear in the wff w, then

$$
\bigwedge_{i=1}^{r}\left(\ell \vee a_{i}\right) \wedge \bigwedge_{j=1}^{s}\left(\neg \ell \vee b_{j}\right) \wedge w \quad \sim_{S A T} \quad\left(\bigwedge_{i=1}^{r} \bigwedge_{j=1}^{s}\left(a_{i} \vee b_{j}\right)\right) \wedge w
$$

- Before applying the resolution rule the CNF had $r+s$ clauses containing ℓ or its negation
- After applying the rule, the so obtained CNF has rs clauses ...
- and ℓ is resolved (eliminated, simplified).
- Thus, no explicit assignment is required for ℓ.

DP Algorithm: Practical Considerations

Davis, Putnam, 1960

Satisfiability-Preserving Transformations

- Pure literal rule or affirmative-negative rule
- Unit propagation or 1-literal rule
- Resolution rule or rule for eliminating literals

practice

- Pure literal rule is expensive to detect dynamically
- Unit propagation consumes the most significant runtime
- Resolution rule can exhaust rapidly the available memory

DP Algorithm: Practical Considerations

Davis, Putnam, 1960

Satisfiability-Preserving Transformations

- Pure literal rule or affirmative-negative rule
- Unit propagation or 1-literal rule
- Resolution rule or rule for eliminating literals

In practice

- Pure literal rule is expensive to detect dynamically
- Unit propagation consumes the most significant runtime
- Resolution rule can exhaust rapidly the available memory

Outline

(1) Propositional Logic

(2) CNF Transformation
(3) DPLL-based Algorithms

Unit Propagation Branching and Learning
(4) Conclusion
(5) Reduction Examples

Example

Counter-Based Algorithm for BCP

$$
C_{1}:=x \vee y, \quad C_{2}:=\neg x \vee y \vee \neg z, \quad C_{3}:=x \vee z, \quad C_{4}:=x \vee \neg z
$$

Suppose $\sigma=\{z\}$, that is z is assigned 1 .
Let $\# C:=(C(\ell=0), C(\ell=1))$, then

$$
\# C_{1}=(0,0), \quad \# C_{2}=(1,0), \quad \# C_{3}=(0,1), \quad \# C_{4}=(1,0)
$$

The pair of lists associated with the variable x is

$$
P_{x}:=\left\{C_{1}, C_{3}, C_{4}\right\}, \quad N_{x}:=\left\{C_{2}\right\}
$$

Observe that $C_{3}(\ell=1)=1$, so C_{3} is already satisfied by σ.

Example (cont'd)

Counter-Based Algorithm for BCP

If x is assigned to $0, \sigma$ becomes $\{z, \bar{x}\}$, and the counters $\# C_{i}$ become

$$
\# C_{1}=(1,0), \quad \# C_{2}=(1,1), \quad \# C_{3}=(1,1), \quad \# C_{4}=(2,0)
$$

- $C_{2}(\ell=1)=1: C_{2}$ becomes satisfied.
- $C_{4}(\ell=0)=2=\left|C_{4}\right|: C_{4}$ becomes conflicting.

If x is assigned to $1, \sigma$ becomes $\{z, x\}$, and the counters $\# C_{i}$ become

$$
\# C_{1}=(0,1), \quad \# C_{2}=(2,0), \quad \# C_{3}=(0,2), \quad \# C_{4}=(1,1)
$$

- $C_{1}(\ell=1)=C_{4}(\ell=1)=1: C_{1}$ and C_{4} become satisfied.
- $C_{2}(\ell=0)=2=-1+3=-1+\left|C_{2}\right|: C_{2}$ becomes a unit clause.

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- Each variable s has two lists of clauses:

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- Each variable s has two lists of clauses: If s is assigned, $C(\ell=0)$ and $C(\ell=1)$ for all C in $P_{s} \cup N_{s}$ are updated

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- $C(\ell=0):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=0$
- $C(\ell=1):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=1$
- Each variable s has two lists of clauses:

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- $C(\ell=0):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=0$
- $C(\ell=1):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=1$
- Each variable s has two lists of clauses:
- P_{s} : set of clauses where the variable occurs positively - N_{s} : set of clauses where the variable occurs negatively If s is assigned, $C(\ell=0)$ and $C(\ell=1)$ for all C in $P_{S} \cup N_{S}$ are updated

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- $C(\ell=0):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=0$
- $C(\ell=1):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=1$
- Each variable s has two lists of clauses:
- P_{s} : set of clauses where the variable occurs positively
- N_{s} : set of clauses where the variable occurs negatively

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- $C(\ell=0):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=0$
- $C(\ell=1):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=1$
- Each variable s has two lists of clauses:
- P_{s} : set of clauses where the variable occurs positively
- N_{s} : set of clauses where the variable occurs negatively

If s is assigned, $C(\ell=0)$ and $C(\ell=1)$ for all C in $P_{s} \cup N_{s}$ are updated
\square

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- $C(\ell=0):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=0$
- $C(\ell=1):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=1$
- Each variable s has two lists of clauses:
- P_{s} : set of clauses where the variable occurs positively
- N_{s} : set of clauses where the variable occurs negatively

If s is assigned, $C(\ell=0)$ and $C(\ell=1)$ for all C in $P_{s} \cup N_{s}$ are updated

- If $C(\ell=0)=|C|$ then C is a conflicting clause (more later)

Counter-Based Algorithm for BCP

- Denote by $|C|$ the total number of literals in a clause C
- Each clause C has two counters:
- $C(\ell=0):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=0$
- $C(\ell=1):=\# \ell$ such that $\llbracket \ell \rrbracket_{\sigma}=1$
- Each variable s has two lists of clauses:
- P_{s} : set of clauses where the variable occurs positively
- N_{s} : set of clauses where the variable occurs negatively

If s is assigned, $C(\ell=0)$ and $C(\ell=1)$ for all C in $P_{s} \cup N_{s}$ are updated

- If $C(\ell=0)=|C|$ then C is a conflicting clause (more later)
- If $C(\ell=0)=-1+|C|$ and $C(\ell=1)=0$ then it is a unit clause

Boolean Constraint Propagation (BCP)

- Unit propagation is a typical instance of BCP
- Consumes the most significant runtime of modern solvers

Several heuristics proved efficient

- Counter-based (GRASP) [Marques-Silva, Sakallah, 1996]
- Head/Tail lists (SATO) [Zhang, Stickel, 1996]
- 2-literal watching (Chaff) [Moskewicz et al. 2001]

Outline

(1) Propositional Logic

(2) CNF Transformation
(3) DPLL-based Algorithms

Unit Propagation
Branching and Learning
(4) Conclusion
(5) Reduction Examples

Splitting (or Branching) Rule

Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule

Splitting (or Branching) Rule

Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule
(1) Simplify by Unit Propagation and Pure Literals
(2) Recursively pick a variable s (which one?)
(3) Test if $(w \wedge s)$ is SAT
(4) Otherwise return the result for $(w \wedge \neg s)$

Splitting (or Branching) Rule

Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule
(1) Simplify by Unit Propagation and Pure Literals
(2) Recursively pick a variable s (which one?)
(3) Test if $(w \wedge s)$ is SAT
(4) Otherwise return the result for $(w \wedge \neg s)$

Splitting (or Branching) Rule

Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule
(1) Simplify by Unit Propagation and Pure Literals
(2) Recursively pick a variable s (which one?)
(3) Test if $(w \wedge s)$ is SAT
(4) Otherwise return the result for $(w \wedge \neg s)$

Splitting (or Branching) Rule

Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule
(1) Simplify by Unit Propagation and Pure Literals
(2) Recursively pick a variable s (which one?)
(3) Test if $(w \wedge s)$ is SAT
(4) Otherwise return the result for $(w \wedge \neg s)$

Splitting (or Branching) Rule

Davis-Logemann-Loveland 1962

Memory Consumption: The resolution rule can cause a quadratic expansion every time it is applied exhausting rapidly the available memory

The DLL algorithm replaces the resolution rule with a Splitting Rule
(1) Simplify by Unit Propagation and Pure Literals
(2) Recursively pick a variable s (which one?)
(3) Test if $(w \wedge s)$ is SAT
(4) Otherwise return the result for $(w \wedge \neg s)$

Example

$$
w=c_{1} \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5} \wedge c_{6}
$$

$$
\begin{aligned}
& c_{1}=\left(x_{5} \vee x_{6}\right) \\
& c_{2}=\left(x_{1} \vee x_{7} \vee \neg x_{2}\right) \\
& c_{3}=\left(x_{1} \vee \neg x_{3}\right) \\
& c_{4}=\left(x_{2} \vee x_{3} \vee x_{4}\right) \\
& c_{5}=\left(\neg x_{4} \vee \neg x_{5}\right) \\
& c_{6}=\left(x_{8} \vee \neg x_{4} \vee \neg x_{6}\right)
\end{aligned}
$$

Greedy Algorithm

Count the number of unresolved clause for each variable

$$
x_{1}:(2), x_{2}:(2), x_{3}:(2), \mathbf{x}_{4}:(3), x_{5}:(2), x_{6}:(2), x_{7}:(1), x_{8}:(1)
$$

Branch with the variable having the largest number (here x_{4}) $x_{4}=1 @ 1$ (i.e. x_{4} set to 1 at decision level 1)

- c_{4} becomes resolved
- by UP $\left(c_{5}\right), x_{5}=0 @ 1$,
- by UP $\left(c_{1}\right), x_{6}=1 @ 1$,
- by UP $\left(c_{6}\right), x_{8}=1 @ 1$

Count the number of unresolved clause for each remaining variable (c_{2} and c_{3})

$$
\mathbf{x}_{1}:(2), x_{2}:(1), x_{3}:(1), x_{7}:(1)
$$

$x_{1}=102$

- c_{2} and c_{3} become resolved
- The algorithm halts with SAT, $\sigma=\{4, \overline{5}, 6,8,1\}$

Search Graph (Example)

Branching Heuristics

Which variable to branch with ?

Greedy Algorithms

- Exploit the statistics of the clause database
- Estimate the branching effect on each variable (cost function)
- Ex1: Generate the largest number of implications
- Ex2: Satisfy most clauses

Heuristcs

- Maximum occurences on minimum sized clauses (MOM)
- Literal Count Heuristcs

Dynamic Largest Individual Sum (DLIS) [Marques-Silva, 1999]

- Counts the number of unresolved clauses for each free variable
- Chooses the variable with the largest number
- State-dependent (recalculated each time before branching)

Conflicts and Backtracking

Conflicting Clause: a clause with all its literals assigned to 0

Solving conflicts:

- If a conflict is detected at decision level @d, the decision variable of that level is flipped before starting the UP again.
- If a conflict is again detected, the algorithm goes to decision level $@(d-1)$ and so on.
- If decision level 0 reached, return UNSAT
- Essentially a Depth First Search technique.

Problem: several conflicts could be caused by the same assignement made at an early decision level.

The algorithm gets stuck in some sort of "local minimum" with an important number of conflicts.

Conflict-Driven Clause Learning (CDCL)

Marques-Silva,Sakallah,1996 and Bayardo,Schrag,1997

Modern SAT solvers learns the conflicting clauses and attempt to jumpback to an early root of the conflict.

Two graphs are built iteratively

- Search graph (as the one we have already seen)
- Implication graph

Example

$$
\begin{aligned}
w=c_{1} & \wedge c_{2} \wedge c_{3} \wedge c_{4} \wedge c_{5} \wedge c_{6} \\
c_{1} & =\left(x_{5} \vee x_{6}\right) \\
c_{2} & =\left(x_{1} \vee x_{7} \vee \neg x_{2}\right) \\
c_{3} & =\left(x_{1} \vee \neg x_{3}\right) \\
c_{4} & =\left(x_{2} \vee x_{3} \vee x_{4}\right) \\
c_{5} & =\left(\neg x_{4} \vee \neg x_{5}\right) \\
c_{6} & =\left(x_{8} \vee \neg x_{4} \vee \neg x_{6}\right)
\end{aligned}
$$

Assume the following decisions have been made:

$$
x_{8}=0 @ 2, \quad x_{7}=0 @ 3, \quad x_{1}=0 @ 5 .
$$

Implication Graph (Example)

Learning Clauses from a Conflict

- Let $\phi:=\neg x_{1} \wedge \neg x_{7} \wedge \neg x_{8}$
- $w \wedge \phi$ is UNSAT
- Thus, $w \models \neg \phi$ (Tautological implication)
- Therefore, $w \sim w \wedge \neg \phi$
- $\neg \phi$ is a learned clause

Several clauses could be learned by seperating the sources from the conflict in the implication graph

$$
\phi_{1}:=\neg x_{4} \vee x_{8} \quad \phi_{2}:=\neg x_{4} \vee x_{6}
$$

For instance, by adding ϕ_{1} as a new clause to w, with respect to the decision $x_{8}=0 @ 2, x_{4}$ will be forced to 0 (instead of 1 which would lead inevitably to a conflict according to the implication graph).

Backjump

In our example, one can jump back to three decision levels: 2, 3 and 5 (the current one).

Unit Implication Point strategy (used in in Chaff)

- One would want to backtrack to a decision that immediately exploits the learned clause to fix an additional variable without necessarily changing that decision.
- For instance, by learning ϕ_{1} and backtracking to depth 2 (as the earliest decision involved in ϕ), x_{4} will be set to 0 by UP.

CDCL: Learn and Backjump

Learn

- Add a new clause to avoid reaching the same conflict again
- Not unique in general (heuristics)

Backjump

- Jump to a past decision that caused the conflict
- (not necessarily the latest like in backtracking)
- Not unique in general (heuristics)

CDCL: Forget and Restart

Forget

- When too much clauses are learned
- heuristics: forget those not frequently used by literal propagations

Restart

- If stuck, restart from the beginning (extreme backjumping)
- Keep the learned clauses

Variable State Independent Decaying Sum

 VSIDS. [Moskewicz et al., 2001]In modern solvers, branching heuristics exploit the learned clauses:

- Keeps two scores for each variable
- (\# of pos occurences, \# of neg occurences)
- Increases the score of a variable by a constant if it appears in a learned conflicting-clause
- Periodically, all the scores are divided by a constant
- Branch with the variable with the highest combined score
\rightarrow Cheap to maintain (State Independent)
- Captures the recently active variables

Outline

(1) Propositional Logic
(2) CNF Transformation
(3) DPLL-based Algorithms

Unit Propagation
Branching and Learning

4 Conclusion
(5) Reduction Examples

DPLL-CDCL Modern Decision Procedures

```
status = preprocess();
if (status!=UNKNOWN) return status;
while(true) {
    decide_next_branch();
    while (true) {
        status = deduce();
        if (status = CONFLICT) {
        blevel = analyze_conflict();
        if (blevel == 0)
            return UNSATISFIABLE;
        else backtrack(blevel);
        } else if (status == SATISFIABLE)
        return SATISFIABLE;
    else break;
    }
}
```


Anatomy of Modern Sat Solvers

 [Katebi et al., 2011]

Visualizing Boolean Functions
 [SATGraf, Newsham et al., 2015]

Miscellaneous

SAT Competition

- Visit satlive.org

Applications

- Automated Theorem Proving (more later)
- Current industrial applications (hardware verification):
- hundreds of millions of variables and clauses for a couple of hours of computations

Alternative Approaches

- Stalmarck's method (generate UNSAT certificates)
- Greedy local search (more adapted for random expressions)

Multiprocessing Scheduling Problem

Data:

- A: a finite set of tasks
- $\ell:$ a measure (or time length) $\ell: A \rightarrow \mathbb{N}$
- m processors
- D : a deadline in \mathbb{N}

Multiprocessing Scheduling Problem (MSP):
Find a partition $A=A_{1} \cup A_{2} \cup \cdots \cup A_{m}$ of A into m disjoint sets such that

$$
\max _{1 \leq i \leq m}\left\{\sum_{a \in A_{i}} \ell(a)\right\} \leq D
$$

Question: Prove that MSP is NP-complete.

Complexity Classes

The problem is in NP: Given a partition, one can check the inequality by computing the max over i.

NP-completeness

- Reduce a known NP-complete problem (e.g. SAT) to the multiprocessing scheduling problem.
- Essentially, solve SAT by solving the given problem.

Popular NP-Complete Problems

[Karp 1972]

Hamiltonian Circuit Problem

Given a graph $G=(V, E)$, is there a vertex permutation $\pi: V \rightarrow V$ such that $\left\{v_{\pi(n)}, v_{\pi(1)}\right\} \in E$ and $\left\{v_{\pi(i)}, v_{\pi(i+1)}\right\} \in E, i=1, \ldots, n-1$?

Partition Problem

Given a finite set A and a positive measure s on A, is there a subset A^{\prime} of A, such that

$$
\sum_{a \in A^{\prime}} s(a)=\sum_{a \in A \backslash A^{\prime}} s(a) ?
$$

Reduction of the Partition Problem

The partition problem is a particular instance of MSP with:

$$
D=\frac{1}{2} \sum_{a \in A} s(a), \quad m=2, \quad s=\ell
$$

Suppose we found a partition of A in two subsets $A_{1} \cup A_{2}$ that solves this instance of MSP, we prove that it solves the partition problem.

Detailed Proof

Suppose that (without loss of generality):

$$
\sum_{a \in A_{1}} s(a) \leq \sum_{a \in A_{2}} s(a)
$$

then, A_{1}, A_{2}, D solve MSP:
$\max _{1 \leq i \leq 2}\left\{\sum_{a \in A_{i}} s(a)\right\}=\sum_{a \in A_{2}} s(a) \leq D=\frac{1}{2} \sum_{a \in A} s(a)=\frac{1}{2} \sum_{a \in A_{1}} s(a)+\frac{1}{2} \sum_{a \in A_{2}} s(a)$
which implies

$$
\frac{1}{2} \sum_{a \in A_{2}} s(a) \leq \frac{1}{2} \sum_{a \in A_{1}} s(a)
$$

Therefore

$$
\sum_{a \in A_{1}} s(a)=\sum_{a \in A_{2}} s(a)=D .
$$

NP-Complete Problems are Ubiquitous

- Graph Theory
- Network Design
- Sets and Partition
- Sequencing and Scheduling
- Algebra and Number Theory
- Games and Puzzles
- Automata and Languages
- Optimization
- Logic

Hence the importance of SAT Solvers ...

Summary

SAT Problems

- Equisatisfiability (CNF transformation)
- Proving tautological implications/equivalences

CDCL-DPLL Algorithm

- Unit Propagation
- Pure Literal
- Resolution/Splitting/Conflict Learning

