Solvers Principles and Architecture (SPA)

Convex Optimization

Master Sciences Informatique (Sif) 2017–2019 Rennes

Khalil Ghorbal khalil.ghorbal@inria.fr

Optimization problems Definitions

- Find an optimal value of a function with respect to some constraints
- Optimum: minimum or maximum
- The function to optimize is called the objective or cost function
- The constraints form a set called the feasible set

Standard form

... at least for this course

$$\begin{array}{ll} \min/\max & f_0(x) \\ s.t. & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_j(x)=0, \quad j=1,\ldots,p \end{array}$$

- x denotes a point in some vector space (e.g. \mathbb{R}^n)
- All functions are real valued: their codomain is $\ensuremath{\mathbb{R}}$
- The codomain of the constraints f_i, 1 ≤ i ≤ m, will be generalized later, together with the order relation (≤)

Optimal value:

$$\mathfrak{p}^{\star} = \inf / \sup \left\{ f_0(x) \mid \bigwedge_{i=1}^m f_i(x) \leq 0 \land \bigwedge_{j=1}^p h_j(x) = 0 \right\}$$

- Let \Diamond and \Box be elements of some vector space V
- \mathbb{R}^n , \mathcal{M}^n , \mathcal{S}^n , etc.
- An inner product is a bilinear function from V imes V to ${\mathbb R}$

Outline

Introduction

2 Simplex algorithm

3 Duality

4 Convexity

- **5** Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
- 6 Interior Point Method
- **7** Semidefinite Programming (SDP)
- 8 SDP Relaxation

Linear programming

- $c, x \in \mathbb{R}^n$
- $c \cdot x$ is the **inner product** of c and x
- A an $m \times n$ matrix (over the reals)
- $b \in \mathbb{R}^m$
- $x, y \in \mathbb{R}^k$, $x \le y$ means $y x \in \mathbb{R}^k_+$ (non negative orthant)

Saturated formulation

$$\exists x \in \mathbb{R}^n. Ax \leq b \quad \longleftrightarrow \quad \exists s \in \mathbb{R}^k_+. A's = b$$

Saturation Procedure

- add 2 fresh variables for each variable
- add a fresh variable for each row of A
- k = 2n + #rows of A

Example

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leq 1, \text{ in } \mathbb{R}^2 \ \leftarrow \begin{smallmatrix} x_1 = s_1 - s_2 \\ x_2 = s_3 - s_4 \end{smallmatrix} \rightarrow \ \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_5 \end{pmatrix} = 1, \text{ in } \mathbb{R}^5_+$$

Vertices and Bases (1/2)

 $x \in \mathbb{R}^{n}_{+}$, Ax = b, rank $(A) = m \le n$ (empty polyhedron otherwise). Base (algebraic vertex)

Let $\{\mathfrak{B},\mathfrak{N}\}\)$ be a partition of $\{1,\ldots,n\}$. \mathfrak{B} is a *base* if and only if $|\mathfrak{B}| = \operatorname{rank}(A_{\mathfrak{B}})\)$ where $A_{\mathfrak{B}}$ is the submatrix of A with columns in \mathfrak{B} . \mathfrak{B} is *non-degenerate* if $|\mathfrak{B}| = m$, and *degenerate* otherwise $(|\mathfrak{B}| < m)$.

Example

For $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$, {1} and {3} are degenerate bases while {*i*,*j*}, $1 \le i < j \le 3$, are non-degenerate.

Proposition

Let \mathfrak{B} be a base. The unique point v (if any) in the polyhedron such that $v_i = 0$ for all $i \in \mathfrak{N}$ (i.e. $i \notin \mathfrak{B}$) is a **vertex** (facet of dimension zero). (Such a point may not exist since $A_{\mathfrak{B}}^{-1}b$ has to be non-negative.)

Vertices and Bases (2/2)

(Weak) Correspondence

- Each vertex has at least one base.
- Each base has at most one vertex.

Examples

- The polyhedron $x_1, x_2 \in \mathbb{R}_+, -x_1 + x_2 = 1$ has no vertex associated with the (non-degenerate) base $\mathfrak{B} = \{1\}$ because $A_{\mathfrak{B}}^{-1}b < 0$.
- The polyhedron $x_1, x_2 \in \mathbb{R}_+, x_1 + x_2 = 0$ has the same vertex, (0, 0) associated with two (non-degenerate) bases: $\mathfrak{B} = \{1\}$ and $\mathfrak{B}' = \{2\}$.

Local Considerations

Let \mathfrak{B} be a base associated with the vertex v. For simplicity, suppose that \mathfrak{B} is non-degenerate so that $A_{\mathfrak{B}}$ is invertible. Thus, for all $x = (x_{\mathfrak{B}} x_{\mathfrak{N}})^t$:

$$Ax = \begin{pmatrix} A_{\mathfrak{B}} & A_{\mathfrak{N}} \end{pmatrix} \begin{pmatrix} x_{\mathfrak{B}} \\ x_{\mathfrak{N}} \end{pmatrix} = A_{\mathfrak{B}} x_{\mathfrak{B}} + A_{\mathfrak{N}} x_{\mathfrak{N}} = b \implies x_{\mathfrak{B}} = A_{\mathfrak{B}}^{-1} (b - A_{\mathfrak{N}} x_{\mathfrak{N}})$$

The above equation has a solution in the non-negative orthant, namely v. Suppose that the polyhedron is not reduced to a point. Then, there exists a positive real number ϵ such that:

$$\forall x_{\mathfrak{N}} \in \mathbb{R}^{|\mathfrak{N}|}_{+} \quad \|x_{\mathfrak{N}}\|_{\infty} \leq \epsilon \implies x_{\mathfrak{B}} = A_{\mathfrak{B}}^{-1}(b - A_{\mathfrak{N}}x_{\mathfrak{N}}) \geq 0$$

We next **solve** the original optimization problem **locally** around v.

Reduction

min
$$c \cdot x$$
min $r \cdot x_{\mathfrak{N}} + a$ $s.t.$ $Ax = b$ $s.t.$ $x_{\mathfrak{N}} \ge 0$ $x \ge 0$ $\|x_{\mathfrak{N}}\|_{\infty} \le \epsilon$

$$c \cdot x = \begin{pmatrix} c_{\mathfrak{B}} \\ c_{\mathfrak{N}} \end{pmatrix} \cdot \begin{pmatrix} A_{\mathfrak{B}}^{-1}(b - A_{\mathfrak{N}}x_{\mathfrak{N}}) \\ x_{\mathfrak{N}} \end{pmatrix} = \underbrace{(c_{\mathfrak{N}} - A_{\mathfrak{N}}^{t}A_{\mathfrak{B}}^{-t}c_{\mathfrak{B}})}_{r} \cdot x_{\mathfrak{N}} + \underbrace{c_{\mathfrak{B}} \cdot A_{\mathfrak{B}}^{-1}b}_{a}$$

As long as ||x_n||_∞ ≤ ε, the point (A_n⁻¹(b - A_nx_n), x_n) is feasible
r ⋅ x_n is called the reduced cost function

Optimality criterion

- We seek a displacement that **locally** decreases $r \cdot x_{\mathfrak{N}}$
- Suppose that there exists a index j such that $r_j < 0$
- Consider a displacement along this *j*th coordinate
- Let e_j denote the *j*th vector of the canonical orthonormal basis of $\mathbb{R}^{|r|}$
- Let ρ be a positive real number: $x_{\mathfrak{N}} \leftarrow v_{\mathfrak{N}} + \rho e_j$

$$r \cdot x_{\mathfrak{N}} = r \cdot (v_{\mathfrak{N}} + \rho e_j) = r \cdot v_{\mathfrak{N}} + \rho r \cdot e_j = r \cdot v_{\mathfrak{N}} + \rho r_j < r \cdot v_{\mathfrak{N}}$$

Optimality criterion: $r \ge 0$

- If $r \ge 0$: no possible minimization for $r \cdot x_{\mathfrak{N}}$ since $x_{\mathfrak{N}} \ge 0$
- The only **local minimum** is $x_{\mathfrak{N}} = v_{\mathfrak{N}} = 0$
- which is also global by convexity

Unboundedness criterion

- Recall that locally $x_{\mathfrak{B}} = A_{\mathfrak{B}}^{-1}(b A_{\mathfrak{N}}x_{\mathfrak{N}})$
- So the update $x_{\mathfrak{N}} \leftarrow v_{\mathfrak{N}} + \rho e_j$ leads to

$$x_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}^{-1}(b - A_{\mathfrak{N}}(v_{\mathfrak{N}} + \rho e_{j})) = \underbrace{A_{\mathfrak{B}}^{-1}b}_{v_{\mathfrak{B}}} - A_{\mathfrak{B}}^{-1}A_{\mathfrak{N}}\underbrace{v_{\mathfrak{N}}}_{0} - \rho \underbrace{A_{\mathfrak{B}}^{-1}A_{\mathfrak{N}}e_{j}}_{\delta_{\mathfrak{B}}}$$

• Since
$$x_{\mathfrak{B}} \geq 0$$
, we get $v_{\mathfrak{B}} \geq
ho \delta_{\mathfrak{B}}$

This gives an upper bound for ρ:

$$\rho \leq \min_{i} \left\{ \frac{(v_{\mathfrak{B}})_{i}}{(\delta_{\mathfrak{B}})_{i}} \mid (\delta_{\mathfrak{B}})_{i} > 0 \right\}$$

Unboundedness criterion: $\delta_{\mathfrak{B}} \leq 0$ ρ can be chosen arbitrarily big and the minimum is $-\infty$

Geometric intuitions

When $x_{\mathfrak{N}} \leftarrow v_{\mathfrak{N}} + \rho e_j$:

- The *j*th component of $x_{\mathfrak{N}}$ becomes strictly positive
- When ρ increases, x moves along an edge (a facet of dimension 1)
- If ρ is unbounded, the minimum is $-\infty$ (halt)
- If ρ is bounded, one component (say the *i*th) of x_B vanishes when ρ reaches its upper bound: we reach a new vertex.
- update the base: let $(\mathfrak{B}',\mathfrak{N}') = ((\mathfrak{B} \setminus \{i\}) \cup \{j\}, (\mathfrak{N} \setminus \{j\}) \cup \{i\})$
- If $\operatorname{rank}(A_{\mathfrak{B}'}) = m$, then \mathfrak{B}' is a new non-degenerate base
- Otherwise, $rank(A'_{\mathfrak{B}}) < m$, and we can remove some elements from \mathfrak{B}' (other than j) to make it a non-degenerate base
- repeat if the optimality criterion $(r \ge 0)$ is not met.

- 1 Start at a vertex (base)
- 2 If the optimality criterion is satisfied, halt: the problem is solved
- **3** Otherwise, move along an edge that minimizes the reduced cost function
- 4 If the unboundedness criterion is satisfied, halt: the problem is unbounded
- 5 Otherwise, we reach a new vertex and we loop back to the first step

Does it always terminate?

Example

$$\begin{array}{ll} \min & x_1 - x_2 \\ s.t. & x_1 + x_2 = 0 \\ & x \ge 0 \end{array}$$

• Start with the base $\mathfrak{B} = \{1\}$, $\mathfrak{N} = \{2\}$

•
$$v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $A_{\mathfrak{B}} = A_{\mathfrak{N}} = (1)$

•
$$r = c_{\mathfrak{N}} - A_{\mathfrak{N}}^t A_{\mathfrak{B}}^{-t} c_{\mathfrak{B}} = (-2) \text{ and } \delta_{\mathfrak{B}} = A_{\mathfrak{B}}^{-1} A_{\mathfrak{N}} e_j = (1)$$

- update $x_{\mathfrak{N}} \leftarrow 0 + \rho$, $x_{\mathfrak{B}} \leftarrow 0 \rho \ (\rho = 0)$
- So the algorithm is **updating the base without changing the vertex**

Outline

1 Introduction

2 Simplex algorithm

3 Duality

4 Convexity

- **5** Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
- 6 Interior Point Method
- **7** Semidefinite Programming (SDP)
- 8 SDP Relaxation

Lagrangian function

The primal problem is the minimization problem (by convention).

$$\begin{array}{ll} \min & f_0(x) \\ s.t. & f_i(x) \le 0, \quad i = 1, \dots, m \\ & h_j(x) = 0, \quad j = 1, \dots, p \end{array}$$

Intuition: inject the constraint into the objective function. The Lagrangian associated to (\mathcal{P}) is defined by:

$$L(x,\lambda,\mu)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{j=1}^p\mu_jh_j(x),$$

- No extra constraints for x (as long as the functions are defined)
- λ_i , i = 1, ..., m, are non negative real numbers
- μ_j , $j = 1, \dots, p$, are unconstrained real numbers

Lagrangian's saddle points

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \mu_j h_j(x)$$
.

- If there exists an x̄ and an index i such that f_i(x̄) > 0, then L(x̄, λ, μ) is unbounded since λ_i can be chosen arbitrarily big.
- If there exists an x̄ and an index j such that h_j(x̄) ≠ 0, then L(x̄, λ, μ) is also unbounded since μ_j can be chosen arbitrarily big or small depending on the sign of h_j(x̄).

$$\sup_{\lambda \geq 0, \mu} L(x, \lambda, \mu) = \begin{cases} f_0(x) & \text{if } \bigwedge_i f_i(x) \leq 0 \land \bigwedge_j h_j(x) = 0 \\ +\infty & \text{otherwise} \end{cases}$$

Solving (p) is then equivalent to minimizing $\sup_{\lambda \ge 0,\mu} L(x, \lambda, \mu)$ over x:

$$\mathfrak{p}^{\star} = \inf_{x} \sup_{\lambda \ge 0, \mu} L(x, \lambda, \mu)$$

)

Weak duality

In general, if *L* is a real valued function defined over the product $X \times Y$, then

$$\sup_{y} \inf_{x} L(x, y) \leq \inf_{x} \sup_{y} L(x, y)$$

Proof. Let $(\bar{x}, \bar{y}) \in X \times Y$, then, by definition of inf and sup

$$\inf_{x} L(x, \bar{y}) \le L(\bar{x}, \bar{y}) \le \sup_{y} L(\bar{x}, y)$$

So $\sup_y L(\bar{x}, y)$ is an upper bound of $\inf_x L(x, \bar{y})$. Since the sup is the smallest upper bound by definition, one gets

$$\sup_{\bar{y}} \inf_{x} L(x, \bar{y}) \leq \sup_{y} L(\bar{x}, y)$$

But then $\sup_{\bar{y}} \inf_{x} L(x, \bar{y})$ is a lower bound for $\sup_{y} L(\bar{x}, y)$. Since, dually, the inf is the biggest lower bound, one gets the desired result:

$$\sup_{\bar{y}} \inf_{x} L(x, \bar{y}) \leq \inf_{\bar{x}} \sup_{y} L(\bar{x}, y) .$$

Weak duality applied to L

By the weak duality, we get a **lower bound** of the optimal value p^* :

$$\mathfrak{d}^{\star} := \sup_{\lambda \ge 0, \mu} \inf_{x} L(x, \lambda, \mu) \quad \leq \quad \inf_{x} \sup_{\lambda \ge 0, \mu} L(x, \lambda, \mu) = \mathfrak{p}^{\star}$$

where \mathfrak{d}^* denotes the objective value of a distinct, yet related, optimization problem, (\mathfrak{d}), called the **dual problem**, and defined by $\sup_{\lambda \ge 0,\mu} \inf_x L(x,\lambda,\mu)$, for the **exact same Lagrangian** L of (\mathfrak{p}).

$$\begin{array}{ll} \max & g(\lambda,\mu) := \inf_{x} L(x,\lambda,\mu) \\ s.t. & \lambda_i \ge 0, \quad i = 1,\ldots,m \end{array} \tag{d}$$

Duality properties

 The evaluation of the dual cost function on any feasible point of the dual problem bounds from below p* (primal optimum):

$$orall (\lambda,\mu) \in \mathbb{R}^m_+ imes \mathbb{R}^p. \hspace{1em} g(\lambda,\mu) \leq \mathfrak{p}^\star$$

- If the primal is unbounded $(\mathfrak{p}^\star=-\infty)$ then the dual is unfeasible
- If the dual is unbounded $(\mathfrak{d}^\star=+\infty)$ then the primal is unfeasible
- The primal and dual cannot be unbounded simultaneously
- The primal and the dual can be both unfeasible $(-\infty \leq +\infty)$

Weak vs. Strong duality

Weak duality: Always true

$$\mathfrak{d}^\star \leq \mathfrak{p}^\star$$

Strong duality: Not true in general

$$\mathfrak{d}^\star = \mathfrak{p}^\star$$

Sufficient conditions under which the strong duality holds are known as **constraint qualifications**.

Example: duality for linear problems

•
$$f_0(x) = c \cdot x$$
 for some fixed vector $c \in \mathbb{R}^n$
• $f_i(x) = -x_i, i = 1, ..., n \ (m = n \text{ in this case})$
• $h_j(x) = A_j \cdot x - b_j, j = 1, ..., p$, for some fixed $A_j \in \mathbb{R}^n$ and $b_j \in \mathbb{R}$
 $L(x, \lambda, \mu) = c \cdot x + \sum_{\substack{i=1 \ -\lambda \cdot x}}^n \lambda_i(-x_i) + \sum_{\substack{j=1 \ \mu \cdot (A_x - b)}}^p \mu_j(A_j \cdot x - b_j)$

The Lagrangian *L* could be rearranged as follows (recall that $Ax \cdot y = x \cdot A^t y$, where A^t denotes the transpose of the matrix *A*):

$$L(x,\lambda,\mu) = -b \cdot \mu + x \cdot (A^t \mu + c - \lambda)$$

and we get:

$$\inf_{x} L(x, \lambda, \mu) = \begin{cases} -b \cdot \mu & \text{if } A^{t} \mu + c - \lambda = 0 \\ -\infty & \text{otherwise} \end{cases}$$

Example (cont'd)

$$\begin{array}{ll} \min & c \cdot x & \max & -b \cdot \mu \\ s.t. & Ax = b & (\mathfrak{p}) & s.t. & A^t \mu + c - \lambda = 0 & (\mathfrak{d}) \\ & x \geq 0 & \lambda \geq 0 \end{array}$$

There are **several possible formulations**, for instance:

$$\begin{array}{ll} \min & c \cdot x & \max & -b \cdot \lambda \\ s.t. & Ax \leq b & (\mathfrak{p}) & s.t. & A^t \lambda + c = 0 & (\mathfrak{d}) \\ & & \lambda \geq 0 \end{array}$$

In this case (everything is linear), they are all **dual** of each other!

Optimality criterion for the simplex algorithm

The **reduced problem** has the form ($\epsilon > 0$, $|\mathfrak{N}| = k$):

min
$$r \cdot x_{\mathfrak{N}}$$

s.t. $\begin{pmatrix} -I_k \\ I_k \end{pmatrix} x_{\mathfrak{N}} \leq \begin{pmatrix} 0 \\ \epsilon \end{pmatrix}$ (\mathfrak{p})

$$\max - \begin{pmatrix} 0 \\ \epsilon \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = -\epsilon \cdot \lambda_2$$
s.t. $(-I_k \quad I_k) \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} + r = -\lambda_1 + \lambda_2 + r = 0$ (d) $\lambda_1 \ge 0, \lambda_2 \ge 0$

So $\lambda_2^* = 0$ and $r = \lambda_1^*$. Thus $r \ge 0$ which is the **optimality criterion**.

Properties of the Dual Problem

- The objective function $g(\lambda, \mu)$ is **concave** (to be proven later)
- The feasible set is **convex**
 - λ belongs to the non negative orthant \mathbb{R}^m_+
 - μ is unconstrained

What is convexity?

Outline

Introduction

- 2 Simplex algorithm
- 3 Duality

4 Convexity

- **5** Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
- 6 Interior Point Method
- **7** Semidefinite Programming (SDP)
- 8 SDP Relaxation

Convexity

- Intuition: A set C is convex if and only if, for any two points in C, the shortest path that links these two points is also entirely in C.
- A point in a vector space is a vector and one can define scalar multiplication, addition etc.
- In these settings, C is convex if and only if, for all $c_1, c_2 \in C$, for all $\lambda \in [0, 1], \lambda c_1 + (1 \lambda)c_2$ is also in C.

Convex functions

Definition: The **epigraph** of a function $f : \mathcal{D} \to \mathbb{R}$ is defined by

$${\operatorname{epi}}(f) := \{(x,y) \mid f(x) \le y\} \subset \mathcal{D} imes \mathbb{R}$$

• f is **convex** if and only if its epigraph is a convex set

• f is concave if and only if $-f: x \mapsto -f(x)$ is convex

Examples:

- $f: x\mapsto x^2$ is convex (cf. left figure in the previous slide)
- $f: x \mapsto x^3 + x^2$ is not convex (cf. right figure in the previous slide)

Properties of convex functions

- $\forall \lambda \in [0,1]$. $\forall x, y$. $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
- Intuition: the image of a point in the segment joining x and y is somewhere below the segment joining f(x) and f(y)
- Any local minimum of *f* is also a global minimum
- One can define a weak notion of differentiability over convex functions
- The sub-differential of f at x is defined by the following set:

$$\partial f(x) := \{ z \in \mathbb{R}^n \mid \forall t \in \mathbb{R}^n. \quad f(t) \ge f(x) + z \cdot (t - x) \}$$

where $x \cdot y$ denotes the usual scalar product over \mathbb{R}^n

- Intuition: the sub-differential at x is the set of all affine functions that touches the graph of f only at x
- Example: the absolute value function is non-differentiable at 0 in the usual sense, but it is sub-differentiable, ∂f(0) = [−1, 1]

Support function

Let C be any non-empty subset of a vector space equipped with an inner product denoted by (\cdot) .

Support function of a set

$$\delta_C(x) := \sup_{a \in C} \{x \cdot a\}$$

- δ_C is defined for any vector x
- δ_C , as a function of x, is **convex**

Geometrical intuition: support function

The dual is always convex

• Let
$$\nu := (\lambda_1, \dots, \lambda_m, \mu_1, \dots, \mu_p, 1) \in \mathbb{R}^{m+p+1}$$

• Let $u_x := (f_1(x), \dots, f_m(x), h_1(x), \dots, h_p(x), f_0(x)) \in \mathbb{R}^{m+p+1}$

• Let $S := \{u_x \mid f_i, h_j \text{ are defined }\} \subseteq \mathbb{R}^{m+p+1}$

$$L(x,\lambda,\mu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^p \mu_j h_j(x) = \nu \cdot u_x$$

The **objective function** g is **concave** (opposite of a support function):

$$g(\lambda, \mu) = \inf_{x} L(x, \lambda, \mu)$$
$$= \inf_{x} \{\nu \cdot u_{x}\}$$
$$= -\sup_{x} \{(-\nu) \cdot u_{x}\}$$
$$= -\delta_{S}(-\nu)$$

Geometrical intuition: weak vs strong duality

Outline

Introduction

- 2 Simplex algorithm
- 3 Duality
- 4 Convexity

5 Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)

- 6 Interior Point Method
- **7** Semidefinite Programming (SDP)

8 SDP Relaxation
Convex problems

- *f*₀ is convex
- *f_i*, *i* = 1, . . . , *m* are convex
- h_j , $j = 1, \ldots, p$ are linear in x: $h_j(x) = A_j \cdot x b_j$

$$\begin{array}{ll} \min & f_0(x) \\ s.t. & f_i(x) \leq 0, i = 1, \dots, m \qquad (\mathfrak{p}) \\ & A_j \cdot x - b_j = 0, j = 1, \dots, p \end{array}$$

Slater's condition (constraint qualifications for convex problems) If the **primal is strictly feasible** (i.e. there exists an *x* such that $f_i(x) < 0$, i = 1, ..., m, and $A_j \cdot x - b_j = 0$, j = 1, ..., p), then **strong duality holds** $\mathfrak{d}^* = \mathfrak{p}^* < +\infty$.

Complementarity (under Slater's condition)

Let (λ^*, μ^*) be the optimum dual and x^* be the optimum primal:

•
$$x^*$$
 is feasible:
$$\begin{cases} f_i(x^*) \le 0 & i = 1, \dots, m \\ A_j \cdot x^* - b_j = 0 & j = 1, \dots, p \end{cases}$$

• (λ^*, μ^*) is feasible: $\lambda^* \ge 0$

As a consequence of the strong duality, we have in addition:

$$\mathfrak{d}^{\star} = g(\lambda^{\star}, \mu^{\star}) = \inf_{x} L(x, \lambda^{\star}, \mu^{\star}) = f_0(x^{\star}) = p^{\star}$$

Therefore, by definition of the infimum

$$\begin{split} f_0(x^*) &= \inf_x L(x, \lambda^*, \mu^*) \le L(x^*, \lambda^*, \mu^*) \\ &= f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^p \mu_j (A_j \cdot x^* - b_j) \\ &= f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) \end{split}$$

Complementarity (cont'd)

$$\begin{cases} 0 \leq \sum_{i=1}^{m} \lambda_i^* f_i(x^*) \\ \lambda_1^*, \dots, \lambda_m^* \geq 0 \\ f_1(x^*), \dots, f_m(x^*) \leq 0 \end{cases} \end{cases} \iff \begin{cases} \lambda_i^* f_i(x^*) = 0 \\ \lambda_i^* \geq 0 \\ -f_i(x^*) \geq 0 \end{cases} i = 1, \dots, m$$

Complementarity conditions

$$0 \leq \lambda_i^* \perp -f_i(x^*) \geq 0, \quad i=1,\ldots,m$$

When f_0 , f_1 ,..., f_m are continuously differentiable (i.e. C^1), the optimum x^* has also to satisfy the following condition:

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*,\lambda,\mu) = \nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla f_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j A_j = 0$$

Recall that

$$abla_{\mathbf{x}}L = \left(\frac{\partial L}{\partial x_1}, \dots, \frac{\partial L}{\partial x_m}\right)$$

Karush-Kuhn-Tucker Conditions

Definition

For an optimization problem (\mathfrak{p}) with Lagrangian L and such that f_0 , $f_1, \ldots, f_m, h_1, \ldots, h_p$ are C^1 , x^* verify the KKT conditions if and only if there exists some $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$ such that:

1 Primal feasibility: $\begin{cases} f_i(x^*) \le 0 & i = 1, \dots, m \\ h_j(x^*) = 0 & j = 1, \dots, p \end{cases}$

- **2** Dual feasibility: $\lambda \ge 0$
- **3** Complementarity $\lambda_i f_i(x^*) = 0$, i = 1, ..., m
- **4** Stationarity: $\nabla_{x}L(x^*, \lambda, \mu) = 0$

Under constraint qualifications, KKT conditions are **only necessary**.

Convex problems

Under <u>Slater's condition</u>, KKT conditions are also sufficient: x^* is optimum if and only if KKT conditions hold.

Outline

Introduction

- 2 Simplex algorithm
- 3 Duality
- 4 Convexity

(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)

6 Interior Point Method

7 Semidefinite Programming (SDP)

8 SDP Relaxation

Assumptions

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$ (p)
 $A_j \cdot x - b_j = 0, j = 1, ..., p$

- f_0, f_1, \ldots, f_m are **convex** and **twice continuously differentiable**
- Slater's condition holds: the problem is strictly feasible
- Thus, strong duality holds and p^{*} is finite and attained for some x^{*} that satisfy KKT conditions

Examples: Linear, Quadratic, Geometric Programming (LP, QP, GP)

Solving KKT system

KKT conditions

 x^* is an optimum for (\mathfrak{p}) if and only if

•
$$A_j \cdot x^* - b_j = 0, \ j = 1, \dots, p$$

•
$$0 \leq \lambda_i^* \perp -f_i(x^*) \geq 0, \quad i=1,\ldots,m$$

•
$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda, \mu) = 0$$

We cannot solve such system numerically as it combines equality and inequality constraints.

Main idea

Design a sequence of optimization problems that we can solve and such that their solutions converges towards the optimum of the original problem.

Non smooth (but convex) reformulation

To get rid of the (problematic) inequality constraints $f_i(x) \le 0$, one can *hide* them inside indicator functions.

Indicator function

The indicator function of \mathbb{R}_{-} is a **convex** function defined as follows:

$$\mathcal{I}(u) = \left\{egin{array}{cc} 0 & ext{if } u \leq 0 \ +\infty & ext{otherwise} \end{array}
ight.$$

The problem (p) becomes then equivalent to

min
$$f_0(x) + \sum_{i=1}^m \mathcal{I}(f_i(x))$$

s.t. $A_j \cdot x - b_j = 0, \quad j = 1, \dots, p$ $(\mathfrak{p}_{\mathcal{I}})$

Smooth approximation

we can approximate the indicator function \mathcal{I} smoothly using a sequence of logarithmic barriers:

$$\varphi_t : \mathbb{R} \to \mathbb{R}, \quad u \mapsto \left\{ egin{array}{cc} -rac{1}{t}\log(-u) & ext{if } u < 0 \\ +\infty & ext{otherwise} \end{array}
ight.$$

As t increases, $\varphi_t(u)$ remains close to 0 for a fixed u < 0; as u gets close to 0 (from the left), $\varphi_t(u)$ diverges to $+\infty$ for any arbitrarily big fixed t. Let

$$\phi_t(x) = \sum_{i=1}^m \varphi_t(f_i(x)) = -\frac{1}{t} \sum_{i=1}^m \log(-f_i(x))$$

Logarithmic barrier approximation

The idea is to approximate \mathfrak{p}^* using the sequence \mathfrak{p}_t^* (t > 0):

$$\begin{array}{ll} \min & f_0(x) + \phi_t(x) \\ s.t. & A_j \cdot x - b_j = 0, \quad j = 1, \dots, p \qquad (\mathfrak{p}_t) \end{array}$$

Logarithmic barrier functions

Fix a positive t.

$$\phi_t(x) = -\frac{1}{t} \sum_{i=1}^m \log(-f_i(x)), \quad \operatorname{dom}_t \phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- ϕ_t is **convex** as a function of x (composition rule applied to φ_t and f_i)
- ϕ_t twice continuously differentiable (with respect to x)

$$\nabla \phi_t(x) = \sum_{i=1}^m \frac{1}{-tf_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{-tf_i(x)^2} \nabla f_i(x) \nabla f_i(x)^t + \frac{1}{t} \sum_{i=1}^m \frac{1}{-tf_i(x)} \nabla^2 f_i(x)$$

Logarithmic barriers: Example

$$\phi(x) = -\log(-(-x_1 - x_2)) - \log(-(-2x1 + x^2 - 1)) \\ -\log(-(3x1 + x^2 - 10)) - \log(x^2 + 1)$$

KKT conditions for p_t

Since p satisfies Slater's condition, so does p_t for any t > 0: strong duality holds ($\mathfrak{d}_t^* = \mathfrak{p}_t^* < +\infty$).

KKT conditions

Fix t > 0. $x^*(t)$ is an optimum for (\mathfrak{p}_t) if and only if

• $x^*(t) \in \operatorname{dom} \phi_t$

•
$$A_j \cdot x^*(t) - b_j = 0, \ j = 1, \dots, p$$

•
$$\nabla_{x}L_{t}(x^{*}(t),\mu(t))=0$$

Observe that, by construction, the system has no complementarity conditions since the feasible set of (p_t) has no inequality constraints.

Stationarity: $\nabla_{x}L_{t}$ vs $\nabla_{x}L$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda, \mu) = \nabla f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla f_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j A_j = 0$$

For $x \in \text{dom}\phi_t$:

$$abla_{x}L_{t}(x^{*}(t),\mu(t)) =
abla f_{0}(x^{*}(t)) +
abla \phi_{t}(x^{*}(t)) + \sum_{j=1}^{p} \mu_{j}(t)A_{j}$$

$$= \nabla f_0(x^*(t)) + \sum_{i=1}^m \underbrace{\frac{1}{-tf_i(x^*(t))}}_{\lambda_i(t)} \nabla f_i(x^*(t)) + \sum_{j=1}^p \mu_j(t) A_j$$

= 0

 $\lambda_i(t)$ and $\mu_j(t)$ seem to be natural candidates for λ_i and μ_j respectively.

Checking KKT conditions of p

Consider $(x^*(t), \lambda(t), \mu(t))$ as potential candidates for (x^*, λ, μ) . We need to check whether they satisfy the KKT conditions of \mathfrak{p} .

- A_j · x*(t) b_j = 0 holds thanks to the primal feasibility of x*(t) as an optimal solution of p_t
- $f_i(x^*(t)) \le 0$ holds thanks to the strong duality of \mathfrak{p}_t , in particular $\mathfrak{p}_t^* < +\infty$
- $0 \le \lambda_i^*(t)$ holds by definition (recall that t > 0)
- $\nabla_x L(x^*(t), \lambda(t), \mu(t)) = 0$ holds also by definition of $\lambda(t)$ and $\mu(t)$

Only the complementarity is missing and we have

$$-\lambda_i(t)f_i(x^*(t)) = \frac{1}{t}, \quad i = 1..., m$$

As t increases the product tends towards zero, fulfilling the complementarity at infinity.

Primal approximation

$$\mathfrak{d}^{\star} = g(\lambda, \mu) = \inf_{x} L(x, \lambda, \mu) = f_0(x^*) = \mathfrak{p}^{\star}$$
$$\mathfrak{d}^{\star}_t = g_t(\mu(t)) = \inf_{x} L_t(x, \mu(t)) = f_0(x^*(t)) + \phi_t(x^*(t)) = \mathfrak{p}^{\star}_t$$

$$\begin{split} L(x^*(t),\lambda(t),\mu(t)) &= f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-t} + \sum_{j=1}^p \mu_j(t) (A_j \cdot x^*(t) - b_j) \\ &= f_0(x^*(t)) - \frac{m}{t} \end{split}$$

$$egin{aligned} &f_0(x^*(t)) \geq \mathfrak{p}^* = \mathfrak{d}^* \geq g(\lambda(t),\mu(t)) = \inf_x L(x,\lambda(t),\mu(t)) \ &= ?L(x^*(t),\lambda(t),\mu(t)) \ &= f_0(x^*(t)) - rac{m}{t} \end{aligned}$$

Interior point method

Start with a strictly feasible x, t > 0, $\alpha > 1$, and $\epsilon > 0$

- Numerically compute x*(t) by solving the KKT conditions for p_t (Newton-based techniques)
- **2** Update: $x \leftarrow x^*(t)$
- 3 If $\frac{m}{t} < \epsilon$, halt (Stopping criterion)
- **4** Otherwise, increase $t \leftarrow \alpha t$ and repeat
- Halts with $f_0(x^*(\overline{t})) \sim \mathfrak{p}^* \pm \epsilon$
- Several heuristics exist for the choice of α and the initial t

Central path: $\{x^{\star}(t) \mid t > 0\}$

Example of a central path (cont'd)

Outline

Introduction

- 2 Simplex algorithm
- 3 Duality
- 4 Convexity
- **(5)** Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
- 6 Interior Point Method
- **7** Semidefinite Programming (SDP)
- **8** SDP Relaxation

SDP: Generalized LP

Linear programming

$$\begin{array}{ll} \min & c \cdot x \\ s.t. & A_j \cdot x = b_j, \quad (\mathfrak{p}) \\ & 1 \leq j \leq p \\ & x \in \mathbb{R}^n_+ \end{array}$$

$$egin{array}{ll} \max & -b \cdot \mu \ s.t. & A_i^t \cdot \mu + c_i \geq 0 \quad (\mathfrak{d}) \ & 1 \leq i \leq n \end{array}$$

Semidefinite programming

min
$$C \cdot X$$

s.t.
$$A_j \cdot X = b_j$$
, (p)
 $1 \le j \le p$
 $X \in \mathcal{S}^n_+$

• S^n : set of $n \times n$ symmetric matrices

•
$$C, A_j \in S^n$$
, $b_j \in \mathbb{R}$, $1 \leq j \leq p$

- Sⁿ₊: positive semidefinite matrices
- $X \in \mathcal{S}^n_+$ also denoted as $X \succeq 0$
- (·): Frobenius inner product over S^n
- $A \cdot B = tr(A^t B)$ (tr for the trace)

Remarks

SDP generalizes LP in the following sense: instead of linear combinations of real variables (x_i) , $1 \le i \le n$, seen as coordinates of one vector x, SDP allows **linear combinations of inner products** $(X_i \cdot X_j)$, $1 \le i, j \le n$, seen as components of one symmetric matrix X (where X_1, \ldots, X_n are vectors of \mathbb{R}^n).

Two equivalent definitions for $M \in S^n$ to be **positive semidefinite**:

(i) *M* is a Gramian matrix: $\exists u \in \mathbb{R}^n$. $M = uu^t$

(ii) Non negative quadratic form: $\forall v \in \mathbb{R}^n$. $v \cdot Mv = M \cdot vv^t \ge 0$

The Frobenius inner product has a related norm:

$$\|M\|^2 = M \cdot M = \sum_{1 \le i,j \le n} m_{i,j}^2$$

Infimum over symmetric matrices

Let $X, M \in \mathcal{S}^n$, then

$$\inf_X X \cdot M = \begin{cases} 0 & \text{if } M = 0 \\ -\infty & \text{otherwise} \end{cases}$$

- If $M \succ 0$ or $M \prec 0$, then take X = -tM. Then, $X \cdot M = -t ||M||^2$ and make t goes towards $+\infty$
- If *M* is undefinite, then there exists $v \in \mathbb{R}^n$ such that $v \cdot Mv < 0$. Then take $X = tvv^t$, thus:

$$M \cdot X = M \cdot (tvv^t) = t(v \cdot Mv) < 0,$$

and make t goes towards $+\infty$.

So the only choice left is M = 0, in which case the inf is trivial.

Dual SDP

Lagrangian ($\Lambda \in \mathcal{S}^n_+$)

$$L(X,\Lambda,\mu) = C \cdot X + \Lambda \cdot (-X) + \sum_{j=1}^{p} \mu_j (A_j \cdot X - b_j)$$

-

$$g(\Lambda,\mu) = \inf_{X \in \mathcal{S}^n} L(X,\Lambda,\mu) = -b \cdot \mu + \inf_{X \in \mathcal{S}^n} X \cdot \left(C - \Lambda + \sum_{j=1}^p \mu_j A_j\right)$$

$$\begin{array}{ll} \max & -b \cdot \mu \\ s.t. & C - \Lambda + \sum_{j=1}^{p} \mu_{j} A_{j} = 0, \quad (\mathfrak{d}) \\ \Lambda \succeq 0 \end{array} \qquad \begin{array}{l} \max & -b \cdot \mu \\ s.t. & C + \sum_{j=1}^{p} \mu_{j} A_{j} \succeq 0, \quad (\mathfrak{d}) \\ \text{Linear Matrix Inequality} \end{array}$$

KKT conditions

- SDP is a convex problem
- Strong duality holds under Slater's condition
- $\nabla_X C \cdot X = C$

 X^* satisfy the KKT conditions for the primal SDP if and only if there exists $\Lambda \in S^n$, $\mu \in \mathbb{R}^p$ such that:

- 1 Primal feasibility: $A_j \cdot X^* = b_j$, $1 \le j \le p$
- 2 Primal feasibility: $X^* \succeq 0$
- 3 Dual feasibility: Λ ≥ 0
- **4** Complementarity: $\Lambda \cdot X^* = 0$
- **5** Stationarity: $\nabla_X L(X^*, \Lambda, \mu) = C \Lambda + \sum_{j=1}^p \mu_j A_j = 0$

Interior point method

Logarithmic barrier for the positive orthant of \mathbb{R}^n For x > 0: $\phi(x) = -\sum_{i=1}^n \log(x_i)$

Logarithmic barrier for the positive orthant of S^n For $X \succ 0$: $\phi(X) = -\log(\det X)$

Central path

 ${X^*(t) | t > 0}$, where $x^*(t)$ is the optimum of the following parametric convex problem:

min
$$C \cdot X + \frac{1}{t}\phi(X)$$

s.t. $A_j \cdot X - b_j = 0, 1 \le j \le p$ (\mathfrak{p}_t)

Generalized convex problems

$$\begin{array}{ll} \min & f_0(x) \\ s.t. & f_i(x) \preceq_{K_i} 0, i = 1, \dots, m \\ & A_j \cdot x - b_j = 0, j = 1, \dots, p \end{array}$$

• x in a vector space V equipped with an inner product

•
$$f_0: V
ightarrow \mathbb{R}$$
 convex and real valued

•
$$f_i: V \rightarrow V$$
, $i = 1, \ldots, m$, convex

• $f_i(x) \preceq_{K_i} 0$ means that $-f_i(x) \in K_i$ for some proper cone K_i of V

- f_0, f_1, \ldots, f_m twice continuously differentiable (possibly in a weak sense)
- $A_j \in V$, $b_j \in \mathbb{R}$
- Under Slater's condition strong duality holds

Generalized logarithmic barrier for proper cones

 $\phi: V \to \mathbb{R}$ is a generalized logarithm for the proper cone $K \subseteq V$ if:

• ϕ is defined over the interior of K

•
$$\nabla^2 \phi(x) \prec_{\mathcal{S}^n_+} 0$$
 for $0 \prec_{\mathcal{K}} x$

- $\phi(sx) = \phi(x) + rlog(s)$ for all $0 \prec_K x$ and s > 0
- r is the degree of ϕ

Examples:

•
$$K = \mathbb{R}_+$$
, $\phi(x) = \log(x)$ (classical logarithm)

•
$$K = \mathbb{R}^{n}_{+}, \ \phi(x) = \sum_{i=1}^{n} \log(x_i) \ (r = n)$$

•
$$K = S_{+}^{n}$$
: $\phi(x) = \log(\det x) \ (r = n)$

Observe that $-\phi$ is convex (ϕ is concave)

Implementations

Solvers

- Matlab packages: SeDuMi, SDPT3
- Open source: CSDP

Environment

- Matlab software: CVX, YALMIP, SoSTools
- Open source: coin-or.org

Outline

Introduction

- 2 Simplex algorithm
- 3 Duality
- 4 Convexity
- **(5)** Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
- 6 Interior Point Method
- **7** Semidefinite Programming (SDP)

8 SDP Relaxation

Sum-of-squares polynomials

Let $h \in \mathbb{R}[x_1, ..., x_n]$ be a polynomial over the reals. *h* is **non-negative** if and only if $\forall x \in \mathbb{R}^n$. $h(x) \ge 0$

Sum-of-squares (SoS)

A polynomial *h* is a sum of squares if and only if there exists polynomials g_i , $1 \le i \le m$, such that:

$$h = \sum_{i=1}^{m} g_i^2$$

A SoS polynomial is necessarily non-negative. The converse does not hold in general (Motzkin polynomial):

$$h(x_1, x_2) = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 + 1$$

h is non-negative and is not a SoS.

Polynomials as scalar products

Take a polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ of degree $\leq 2d$.

- We can write h as a scalar product $H \cdot X$
- *H* is a symmetric matrix (not unique)
- X is symmetric and **semidefinite positive** (not unique)

X can be seen as a Gramian matrix formed as the (matrix) product of the vector χ and its transpose, where χ denote a vector of monomials of *n* variables of total degree less than *d*.

Example

$$x_{1}^{4} - x_{1}^{2}x_{2}^{2} + x_{2}^{4} = \underbrace{\begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{pmatrix}}_{H} \cdot \underbrace{\begin{pmatrix} x_{1}^{2}\\ x_{1}x_{2}\\ x_{2}^{2} \end{pmatrix}}_{\chi} \begin{pmatrix} x_{1}^{2} & x_{1}x_{2} & x_{2}^{2} \end{pmatrix}$$

SoS is positivedefiniteness

Proposition

A polynomial h is SoS if and only if $H \succeq 0$.

Proof. If $H \succeq 0$ then there exists a matrix U such that $H = U^t U$. Thus

$$h = H \cdot X = (U^{t}U) \cdot (\chi\chi^{t}) = (U\chi) \cdot (U\chi) = \|U\chi\|^{2}$$

If *h* is SoS, then there exist a list of polynomials g_i such that $h = \sum_i g_i^2$. The monomials vector χ is then formed by all the (distinct) monomials appearing in all the g_i . The rows of the matrix *U* are formed by the coefficients of the polynomials g_i .

SoS problems are LMI

Example (cont'd)

$$x_{1}^{4} - x_{1}^{2}x_{2}^{2} + x_{2}^{4} = \underbrace{\begin{pmatrix} 1 & 0 & \mu_{1} \\ 0 & -2\mu_{1} - 1 & 0 \\ \mu_{1} & 0 & 1 \end{pmatrix}}_{H} \cdot \underbrace{\begin{pmatrix} x_{1}^{4} & x_{1}^{3}x_{2} & x_{1}^{2}x_{2}^{2} \\ x_{1}^{3}x_{2} & x_{1}^{2}x_{2}^{2} & x_{1}x_{2}^{3} \\ x_{1}^{2}x_{2}^{2} & x_{1}x_{2}^{3} & x_{2}^{4} \end{pmatrix}}_{X}$$

Thus, *h* is SoS if and only if

$$\exists \mu_1. \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \mu_1 \begin{pmatrix} 0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \succeq 0$$

which is an LMI problem: dual feasibility of the a dual SDP problem.

SoS reformulation of (dual) SDP

h is SoS is equivalent to solving the following dual SDP problem:

$$\begin{array}{ll} \max & 0 \\ s.t. & \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \mu_1 \begin{pmatrix} 0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \succeq 0 \quad (\mathfrak{d}) \end{array}$$

For a fixed degree d, the size of χ is

$$\binom{n+d}{d}$$

The size of the unknown vector of the LMI reformulation is

$$\frac{1}{2}\binom{n+d}{d}\left(\binom{n+d}{d}+1\right)-\binom{n+2d}{2d}$$

Remark

The choice of the monomials list is important:

$$\begin{aligned} x_1^4 - x_1^2 x_2^2 + x_2^4 &= \underbrace{\begin{pmatrix} 1 & 0 & \mu_1 \\ 0 & -2\mu_1 - 1 & 0 \\ \mu_1 & 0 & 1 \end{pmatrix}}_{H} \cdot \underbrace{\begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}}_{\chi} (x_1^2 & x_1 x_2 & x_2^2) \\ &= \underbrace{\begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{pmatrix}}_{H'} \cdot \underbrace{\begin{pmatrix} x_1^2 \\ x_2^2 \end{pmatrix}}_{\chi'} (x_1^2 & x_2^2) \\ & & \end{pmatrix} \end{aligned}$$
SDP relaxation of polynomial problems

 $\begin{array}{ll} \min & p(x) \\ s.t. & h_j(x) = 0, \\ & 1 \leq j \leq p \end{array}$

$$\begin{array}{ll} \min & C \cdot X \\ s.t. & A_j \cdot X = b_j, \quad (\mathfrak{p}) \\ & 1 \leq j \leq p \\ & X \in \mathcal{S}^n_+ \end{array}$$

- non-convex
- size of x: n

• convex

• size of X:
$$\binom{n+d}{d} \times \binom{n+d}{d}$$

•
$$\mathfrak{p}^{\star} \leq p(x)$$

Lasserre hierarchy

Increasing d gives tighter and tighter approximations for the optimal value of the original non-convex problem.

SDP relaxation of discrete problems

Max-cut problem

Let G = (V, E) be a graph. The max-cut problem is the following **discrete** optimization problem

$$\begin{array}{ll} \max & \sum\limits_{(i,j)\in E} \frac{1-v_iv_j}{2}\\ s.t. & v_i = \{-1,1\} \quad (v_i \in V) \end{array}$$

SDP relaxation (Goemans and Williamson 95)

 v_i are now considered vectors, and $v_i v_j$ becomes $v_i \cdot v_j$. Let $X = v v^t$.

$$\begin{array}{ll} -\min & C \cdot X \\ s.t. & \operatorname{diag}(X) = 1, \quad (\mathfrak{p}) \\ & X \succeq 0 \end{array}$$

- *Convex Optimization*. Stephen Boyd and Lieven Vandenberghe. Cambridge University Press
- *Recherche Opérationnelle: aspects mathématiques et applications.* Frédéric Bonnans and Stéphane Gaubert. Ecole Polytechnique
- EE364A (Stephen Boyd, Stanford), EE236B (UCLA), Convex Optimization
 - www.stanford.edu/class/ee364a
 - www.ee.ucla.edu/ee236b/