Solvers Principles and Architecture (SPA)

Convex Optimization

Master Sciences Informatique (Sif) 2017-2019
Rennes

Khalil Ghorbal
khalil.ghorbal@inria.fr

Optimization problems
 Definitions

- Find an optimal value of a function with respect to some constraints
- Optimum: minimum or maximum
- The function to optimize is called the objective or cost function
- The constraints form a set called the feasible set
at least for this course

$$
\begin{aligned}
\min / \max & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{aligned}
$$

- x denotes a point in some vector space (e.g. \mathbb{R}^{n})
- All functions are real valued: their codomain is \mathbb{R}
- The codomain of the constraints $f_{i}, 1 \leq i \leq m$, will be generalized later, together with the order relation (\leq)

Optimal value:

$$
\mathfrak{p}^{\star}=\inf / \sup \left\{f_{0}(x) \mid \bigwedge_{i=1}^{m} f_{i}(x) \leq 0 \wedge \bigwedge_{j=1}^{p} h_{j}(x)=0\right\}
$$

Inner product

- Let \diamond and \square be elements of some vector space V
- $\mathbb{R}^{n}, \mathcal{M}^{n}, \mathcal{S}^{n}$, etc.
- An inner product is a bilinear function from $V \times V$ to \mathbb{R}

Outline

(1) Introduction
(2) Simplex algorithm
(3) Duality
(4) Convexity
(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
(6) Interior Point Method
(7) Semidefinite Programming (SDP)
(8) SDP Relaxation

Linear programming

$$
\begin{array}{cl}
\min & c \cdot x \\
\text { s.t. } & A x \leq b
\end{array}
$$

$$
\begin{array}{ll}
\min & c \cdot x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

- $c, x \in \mathbb{R}^{n}$
- $c \cdot x$ is the inner product of c and x
- A an $m \times n$ matrix (over the reals)
- $b \in \mathbb{R}^{m}$
- $x, y \in \mathbb{R}^{k}, x \leq y$ means $y-x \in \mathbb{R}_{+}^{k}$ (non negative orthant)

Saturated formulation

$$
\exists x \in \mathbb{R}^{n} . A x \leq b \quad \longleftrightarrow \quad \exists s \in \mathbb{R}_{+}^{k} \cdot A^{\prime} s=b
$$

Saturation Procedure

- add 2 fresh variables for each variable
- add a fresh variable for each row of A
- $k=2 n+\#$ rows of A

Example

$$
\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}} \leq 1, \text { in } \mathbb{R}^{2} \leftarrow \substack{x_{1}=s_{1}-s_{2} \\
x_{2}=s_{3}-s_{4}} \rightarrow\left(\begin{array}{lll}
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{5}
\end{array}\right)=1, \text { in } \mathbb{R}_{+}^{5}
$$

Vertices and Bases (1/2)

$x \in \mathbb{R}_{+}^{\mathbf{n}}, A x=b, \operatorname{rank}(A)=m \leq n$ (empty polyhedron otherwise).
Base (algebraic vertex)
Let $\{\mathfrak{B}, \mathfrak{N}\}$ be a partition of $\{1, \ldots, n\} . \mathfrak{B}$ is a base if and only if $|\mathfrak{B}|=\operatorname{rank}\left(A_{\mathfrak{B}}\right)$ where $A_{\mathfrak{B}}$ is the submatrix of A with columns in \mathfrak{B}. \mathfrak{B} is non-degenerate if $|\mathfrak{B}|=m$, and degenerate otherwise $(|\mathfrak{B}|<m)$.

Example

For $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right),\{1\}$ and $\{3\}$ are degenerate bases while $\{i, j\}$, $1 \leq i<j \leq 3$, are non-degenerate.

Proposition

Let \mathfrak{B} be a base. The unique point v (if any) in the polyhedron such that $v_{i}=0$ for all $i \in \mathfrak{N}$ (i.e. $i \notin \mathfrak{B}$) is a vertex (facet of dimension zero).
(Such a point may not exist since $A_{\mathfrak{B}}^{-1} b$ has to be non-negative.)

Vertices and Bases (2/2)

(Weak) Correspondence

- Each vertex has at least one base.
- Each base has at most one vertex.

Examples

- The polyhedron $x_{1}, x_{2} \in \mathbb{R}_{+},-x_{1}+x_{2}=1$ has no vertex associated with the (non-degenerate) base $\mathfrak{B}=\{1\}$ because $A_{\mathfrak{B}}^{-1} b<0$.
- The polyhedron $x_{1}, x_{2} \in \mathbb{R}_{+}, x_{1}+x_{2}=0$ has the same vertex, $(0,0)$ associated with two (non-degenerate) bases: $\mathfrak{B}=\{1\}$ and $\mathfrak{B}^{\prime}=\{2\}$.

Local Considerations

Let \mathfrak{B} be a base associated with the vertex v. For simplicity, suppose that \mathfrak{B} is non-degenerate so that $A_{\mathfrak{B}}$ is invertible. Thus, for all $x=\left(x_{\mathfrak{B}} x_{\mathfrak{N}}\right)^{t}$:
$A x=\left(\begin{array}{ll}A_{\mathfrak{B}} & A_{\mathfrak{N}}\end{array}\right)\binom{x_{\mathfrak{B}}}{x_{\mathfrak{N}}}=A_{\mathfrak{B}} x_{\mathfrak{B}}+A_{\mathfrak{N}} x_{\mathfrak{N}}=b \Longrightarrow x_{\mathfrak{B}}=A_{\mathfrak{B}}^{-1}\left(b-A_{\mathfrak{N}} x_{\mathfrak{N}}\right)$
The above equation has a solution in the non-negative orthant, namely v. Suppose that the polyhedron is not reduced to a point. Then, there exists a positive real number ϵ such that:

$$
\forall x_{\mathfrak{N}} \in \mathbb{R}_{+}^{|\mathfrak{N}|} \quad\left\|x_{\mathfrak{N}}\right\|_{\infty} \leq \epsilon \Longrightarrow x_{\mathfrak{B}}=A_{\mathfrak{B}}^{-1}\left(b-A_{\mathfrak{N}} x_{\mathfrak{N}}\right) \geq 0
$$

We next solve the original optimization problem locally around v.

Reduction

$$
\begin{array}{cl}
\min & c \cdot x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

$$
\min \quad r \cdot x_{\mathfrak{N}}+a
$$

$$
\text { s.t. } \quad x_{\mathfrak{N}} \geq 0
$$

$$
\left\|x_{\mathfrak{N}}\right\|_{\infty} \leq \epsilon
$$

$c \cdot x=\binom{c_{\mathfrak{B}}}{c_{\mathfrak{N}}} \cdot\binom{A_{\mathfrak{B}}^{-1}\left(b-A_{\mathfrak{N}} x_{\mathfrak{N}}\right)}{x_{\mathfrak{N}}}=\underbrace{\left(c_{\mathfrak{N}}-A_{\mathfrak{N}}^{t} A_{\mathfrak{B}}^{-t} c_{\mathfrak{B}}\right)}_{r} \cdot x_{\mathfrak{N}}+\underbrace{c_{\mathfrak{B}} \cdot A_{\mathfrak{B}}^{-1} b}_{a}$

- As long as $\left\|x_{\mathfrak{N}}\right\|_{\infty} \leq \epsilon$, the point $\left(A_{\mathfrak{B}}^{-1}\left(b-A_{\mathfrak{N}} x_{\mathfrak{N}}\right), x_{\mathfrak{N}}\right)$ is feasible
- $r \cdot x_{\mathfrak{N}}$ is called the reduced cost function

Optimality criterion

- We seek a displacement that locally decreases $r \cdot x_{\mathfrak{N}}$
- Suppose that there exists a index j such that $r_{j}<0$
- Consider a displacement along this j th coordinate
- Let e_{j} denote the j th vector of the canonical orthonormal basis of $\mathbb{R}^{|r|}$
- Let ρ be a positive real number: $x_{\mathfrak{N}} \leftarrow v_{\mathfrak{N}}+\rho e_{j}$

$$
r \cdot x_{\mathfrak{N}}=r \cdot\left(v_{\mathfrak{N}}+\rho e_{j}\right)=r \cdot v_{\mathfrak{N}}+\rho r \cdot e_{j}=r \cdot v_{\mathfrak{N}}+\rho r_{j}<r \cdot v_{\mathfrak{N}}
$$

Optimality criterion: $r \geq 0$

- If $r \geq 0$: no possible minimization for $r \cdot x_{\mathfrak{N}}$ since $x_{\mathfrak{N}} \geq 0$
- The only local minimum is $x_{\mathfrak{N}}=v_{\mathfrak{N}}=0$
- which is also global by convexity

Unboundedness criterion

- Recall that locally $x_{\mathfrak{B}}=A_{\mathfrak{B}}^{-1}\left(b-A_{\mathfrak{N}} x_{\mathfrak{N}}\right)$
- So the update $x_{\mathfrak{N}} \leftarrow v_{\mathfrak{N}}+\rho e_{j}$ leads to

$$
x_{\mathfrak{B}} \leftarrow A_{\mathfrak{B}}^{-1}\left(b-A_{\mathfrak{N}}\left(v_{\mathfrak{N}}+\rho e_{j}\right)\right)=\underbrace{A_{\mathfrak{B}}^{-1} b}_{v_{\mathfrak{B}}}-A_{\mathfrak{B}}^{-1} A_{\mathfrak{N}} \underbrace{v_{\mathfrak{N}}}_{0}-\rho \underbrace{A_{\mathfrak{B}}^{-1} A_{\mathfrak{N}} e_{j}}_{\delta_{\mathfrak{B}}}
$$

- Since $x_{\mathfrak{B}} \geq 0$, we get $v_{\mathfrak{B}} \geq \rho \delta_{\mathfrak{B}}$
- This gives an upper bound for ρ :

$$
\rho \leq \min _{i}\left\{\left.\frac{\left(v_{\mathfrak{B}}\right)_{i}}{\left(\delta_{\mathfrak{B}}\right)_{i}} \right\rvert\,\left(\delta_{\mathfrak{B}}\right)_{i}>0\right\}
$$

Unboundedness criterion: $\delta_{\mathfrak{B}} \leq 0$
ρ can be chosen arbitrarily big and the minimum is $-\infty$

Geometric intuitions

When $x_{\mathfrak{N}} \leftarrow v_{\mathfrak{N}}+\rho e_{j}:$

- The j th component of $x_{\mathfrak{N}}$ becomes strictly positive
- When ρ increases, x moves along an edge (a facet of dimension 1)
- If ρ is unbounded, the minimum is $-\infty$ (halt)
- If ρ is bounded, one component (say the i th) of $x_{\mathfrak{B}}$ vanishes when ρ reaches its upper bound: we reach a new vertex.
- update the base: let $\left(\mathfrak{B}^{\prime}, \mathfrak{N}^{\prime}\right)=((\mathfrak{B} \backslash\{i\}) \cup\{j\},(\mathfrak{N} \backslash\{j\}) \cup\{i\})$
- If $\operatorname{rank}\left(A_{\mathfrak{B}^{\prime}}\right)=m$, then \mathfrak{B}^{\prime} is a new non-degenerate base
- Otherwise, $\operatorname{rank}\left(A_{\mathfrak{B}}^{\prime}\right)<m$, and we can remove some elements from \mathfrak{B}^{\prime} (other than j) to make it a non-degenerate base
- repeat if the optimality criterion $(r \geq 0)$ is not met.

Simplex algorithm

(1) Start at a vertex (base)
(2) If the optimality criterion is satisfied, halt: the problem is solved
(3) Otherwise, move along an edge that minimizes the reduced cost function
(4) If the unboundedness criterion is satisfied, halt: the problem is unbounded
(5) Otherwise, we reach a new vertex and we loop back to the first step

Does it always terminate?

Example

$$
\begin{array}{ll}
\min & x_{1}-x_{2} \\
\text { s.t. } & x_{1}+x_{2}=0 \\
& x \geq 0
\end{array}
$$

- Start with the base $\mathfrak{B}=\{1\}, \mathfrak{N}=\{2\}$
- $v=\binom{0}{0}, A_{\mathfrak{B}}=A_{\mathfrak{N}}=(1)$
- $r=c_{\mathfrak{N}}-A_{\mathfrak{N}}^{t} A_{\mathfrak{B}}^{-t} c_{\mathfrak{B}}=(-2)$ and $\delta_{\mathfrak{B}}=A_{\mathfrak{B}}^{-1} A_{\mathfrak{N}} e_{j}=(1)$
- update $x_{\mathfrak{N}} \leftarrow 0+\rho, x_{\mathfrak{B}} \leftarrow 0-\rho(\rho=0)$
- So the algorithm is updating the base without changing the vertex

Outline

(1) Introduction
(2) Simplex algorithm
(3) Duality
(4) Convexity
(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
(6) Interior Point Method
(7) Semidefinite Programming (SDP)
(8) SDP Relaxation

Lagrangian function

The primal problem is the minimization problem (by convention).

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{p}\\
& h_{j}(x)=0, \quad j=1, \ldots, p
\end{array}
$$

Intuition: inject the constraint into the objective function.
The Lagrangian associated to (\mathcal{P}) is defined by:

$$
L(x, \lambda, \mu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \mu_{j} h_{j}(x)
$$

- No extra constraints for x (as long as the functions are defined)
- $\lambda_{i}, i=1, \ldots, m$, are non negative real numbers
- $\mu_{j}, j=1, \ldots, p$, are unconstrained real numbers

Lagrangian's saddle points

$$
L(x, \lambda, \mu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \mu_{j} h_{j}(x) .
$$

- If there exists an \bar{x} and an index i such that $f_{i}(\bar{x})>0$, then $L(\bar{x}, \lambda, \mu)$ is unbounded since λ_{i} can be chosen arbitrarily big.
- If there exists an \bar{x} and an index j such that $h_{j}(\bar{x}) \neq 0$, then $L(\bar{x}, \lambda, \mu)$ is also unbounded since μ_{j} can be chosen arbitrarily big or small depending on the sign of $h_{j}(\bar{x})$.

$$
\sup _{\lambda \geq 0, \mu} L(x, \lambda, \mu)= \begin{cases}f_{0}(x) & \text { if } \bigwedge_{i} f_{i}(x) \leq 0 \wedge \bigwedge_{j} h_{j}(x)=0 \\ +\infty & \text { otherwise }\end{cases}
$$

Solving (\mathfrak{p}) is then equivalent to minimizing $\sup _{\lambda \geq 0, \mu} L(x, \lambda, \mu)$ over x :

$$
\mathfrak{p}^{\star}=\inf _{x} \sup _{\lambda \geq 0, \mu} L(x, \lambda, \mu)
$$

Weak duality

In general, if L is a real valued function defined over the product $X \times Y$, then

$$
\sup _{y} \inf _{x} L(x, y) \leq \inf _{x} \sup _{y} L(x, y)
$$

Proof. Let $(\bar{x}, \bar{y}) \in X \times Y$, then, by definition of inf and sup

$$
\inf _{x} L(x, \bar{y}) \leq L(\bar{x}, \bar{y}) \leq \sup _{y} L(\bar{x}, y)
$$

So sup ${ }_{y} L(\bar{x}, y)$ is an upper bound of $\inf _{x} L(x, \bar{y})$. Since the sup is the smallest upper bound by definition, one gets

$$
\sup _{\bar{y}} \inf _{x} L(x, \bar{y}) \leq \sup _{y} L(\bar{x}, y)
$$

But then $\sup _{\bar{y}} \inf _{x} L(x, \bar{y})$ is a lower bound for $\sup _{y} L(\bar{x}, y)$. Since, dually, the inf is the biggest lower bound, one gets the desired result:

$$
\sup _{\bar{y}} \inf _{x} L(x, \bar{y}) \leq \inf _{\bar{x}} \sup _{y} L(\bar{x}, y)
$$

Weak duality applied to L

By the weak duality, we get a lower bound of the optimal value \mathfrak{p}^{\star} :

$$
\mathfrak{d}^{\star}:=\sup _{\lambda \geq 0, \mu} \inf _{x} L(x, \lambda, \mu) \quad \leq \inf _{x} \sup _{\lambda \geq 0, \mu} L(x, \lambda, \mu)=\mathfrak{p}^{\star}
$$

where \mathfrak{d}^{\star} denotes the objective value of a distinct, yet related, optimization problem, (\mathfrak{d}), called the dual problem, and defined by $\sup _{\lambda \geq 0, \mu} \inf _{x} L(x, \lambda, \mu)$, for the exact same Lagrangian L of (\mathfrak{p}).

$$
\begin{array}{cl}
\max & g(\lambda, \mu):=\inf _{x} L(x, \lambda, \mu) \\
\text { s.t. } & \lambda_{i} \geq 0, \quad i=1, \ldots, m \tag{d}
\end{array}
$$

Duality properties

- The evaluation of the dual cost function on any feasible point of the dual problem bounds from below \mathfrak{p}^{\star} (primal optimum):

$$
\forall(\lambda, \mu) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} . \quad g(\lambda, \mu) \leq \mathfrak{p}^{\star}
$$

- If the primal is unbounded $\left(\mathfrak{p}^{\star}=-\infty\right)$ then the dual is unfeasible
- If the dual is unbounded $\left(\mathfrak{d}^{\star}=+\infty\right)$ then the primal is unfeasible
- The primal and dual cannot be unbounded simultaneously
- The primal and the dual can be both unfeasible $(-\infty \leq+\infty)$

$$
\begin{array}{cllrl}
\min & -x & & \max & \lambda \\
\text { s.t. } & 0 x+1 \leq 0 & (\mathfrak{p}) & \text { s.t. } & 0 \lambda-1=0
\end{array}
$$

Weak vs. Strong duality

Weak duality: Always true

$$
\mathfrak{d}^{\star} \leq \mathfrak{p}^{\star}
$$

Strong duality: Not true in general

$$
\mathfrak{d}^{\star}=\mathfrak{p}^{\star}
$$

Sufficient conditions under which the strong duality holds are known as constraint qualifications.

Example: duality for linear problems

- $f_{0}(x)=c \cdot x$ for some fixed vector $c \in \mathbb{R}^{n}$
- $f_{i}(x)=-x_{i}, i=1, \ldots, n(m=n$ in this case)
- $h_{j}(x)=A_{j} \cdot x-b_{j}, j=1, \ldots, p$, for some fixed $A_{j} \in \mathbb{R}^{n}$ and $b_{j} \in \mathbb{R}$

$$
L(x, \lambda, \mu)=c \cdot x+\underbrace{\sum_{i=1}^{n} \lambda_{i}\left(-x_{i}\right)}_{-\lambda \cdot x}+\underbrace{\sum_{j=1}^{p} \mu_{j}\left(A_{j} \cdot x-b_{j}\right)}_{\mu \cdot(A x-b)}
$$

The Lagrangian L could be rearranged as follows (recall that $A x \cdot y=x \cdot A^{t} y$, where A^{t} denotes the transpose of the matrix A):

$$
L(x, \lambda, \mu)=-b \cdot \mu+x \cdot\left(A^{t} \mu+c-\lambda\right)
$$

and we get:

$$
\inf _{x} L(x, \lambda, \mu)= \begin{cases}-b \cdot \mu & \text { if } A^{t} \mu+c-\lambda=0 \\ -\infty & \text { otherwise }\end{cases}
$$

Example (cont'd)

$$
\begin{array}{llrl}
\min & c \cdot x & \max & -b \cdot \mu \\
\text { s.t. } & A x=b \quad(\mathfrak{p}) & \text { s.t. } & A^{t} \mu+c-\lambda=0 \\
& x \geq 0 & & \lambda \geq 0
\end{array}
$$

There are several possible formulations, for instance:

$$
\begin{array}{lll}
\min & c \cdot x & \max
\end{array}-b \cdot \lambda, ~(\mathfrak{p}) \quad \text { s.t. } \quad A^{t} \lambda+c=0
$$

In this case (everything is linear), they are all dual of each other!

Optimality criterion for the simplex algorithm

The reduced problem has the form $(\epsilon>0,|\mathfrak{N}|=k)$:

$$
\begin{array}{cc}
\min \quad r \cdot x_{\mathfrak{N}} \\
\text { s.t. } \quad\binom{-I_{k}}{I_{k}} x_{\mathfrak{N}} \leq\binom{ 0}{\epsilon} \quad(\mathfrak{p}) \\
\max \quad-\binom{0}{\epsilon} \cdot\binom{\lambda_{1}}{\lambda_{2}}=-\epsilon \cdot \lambda_{2} \\
\text { s.t. } \quad\left(\begin{array}{ll}
-I_{k} & I_{k}
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}}+r=-\lambda_{1}+\lambda_{2}+r=0 \tag{d}\\
& \lambda_{1} \geq 0, \lambda_{2} \geq 0
\end{array}
$$

So $\lambda_{2}^{*}=0$ and $r=\lambda_{1}^{*}$. Thus $r \geq 0$ which is the optimality criterion.

Properties of the Dual Problem

- The objective function $g(\lambda, \mu)$ is concave (to be proven later)
- The feasible set is convex
- λ belongs to the non negative orthant \mathbb{R}_{+}^{m}
- μ is unconstrained

What is convexity?

Outline

(1) Introduction
(2) Simplex algorithm
(3) Duality
(4) Convexity
(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
(6) Interior Point Method
(7) Semidefinite Programming (SDP)
(8) SDP Relaxation

Convexity

- Intuition: A set C is convex if and only if, for any two points in C, the shortest path that links these two points is also entirely in C.
- A point in a vector space is a vector and one can define scalar multiplication, addition etc.
- In these settings, C is convex if and only if, for all $c_{1}, c_{2} \in C$, for all $\lambda \in[0,1], \lambda c_{1}+(1-\lambda) c_{2}$ is also in C.

Convex

Non convex

Convex functions

Definition: The epigraph of a function $f: \mathcal{D} \rightarrow \mathbb{R}$ is defined by

$$
\operatorname{epi}(f):=\{(x, y) \mid f(x) \leq y\} \subset \mathcal{D} \times \mathbb{R}
$$

- f is convex if and only if its epigraph is a convex set
- f is concave if and only if $-f: x \mapsto-f(x)$ is convex

Examples:

- $f: x \mapsto x^{2}$ is convex (cf. left figure in the previous slide)
- $f: x \mapsto x^{3}+x^{2}$ is not convex (cf. right figure in the previous slide)

Properties of convex functions

- $\forall \lambda \in[0,1] . \forall x, y . \quad f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$
- Intuition: the image of a point in the segment joining x and y is somewhere below the segment joining $f(x)$ and $f(y)$
- Any local minimum of f is also a global minimum
- One can define a weak notion of differentiability over convex functions
- The sub-differential of f at x is defined by the following set:

$$
\partial f(x):=\left\{z \in \mathbb{R}^{n} \mid \forall t \in \mathbb{R}^{n} . \quad f(t) \geq f(x)+z \cdot(t-x)\right\}
$$

where $x \cdot y$ denotes the usual scalar product over \mathbb{R}^{n}

- Intuition: the sub-differential at x is the set of all affine functions that touches the graph of f only at x
- Example: the absolute value function is non-differentiable at 0 in the usual sense, but it is sub-differentiable, $\partial f(0)=[-1,1]$

Support function

Let C be any non-empty subset of a vector space equipped with an inner product denoted by (\cdot).

Support function of a set

$$
\delta_{C}(x):=\sup _{a \in C}\{x \cdot a\}
$$

- δ_{C} is defined for any vector x
- δ_{C}, as a function of x, is convex

Geometrical intuition: support function

The dual is always convex

- Let $\nu:=\left(\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{p}, 1\right) \in \mathbb{R}^{m+p+1}$
- Let $u_{x}:=\left(f_{1}(x), \ldots, f_{m}(x), h_{1}(x), \ldots, h_{p}(x), f_{0}(x)\right) \in \mathbb{R}^{m+p+1}$
- Let $S:=\left\{u_{x} \mid f_{i}, h_{j}\right.$ are defined $\} \subseteq \mathbb{R}^{m+p+1}$

$$
L(x, \lambda, \mu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \mu_{j} h_{j}(x)=\nu \cdot u_{x}
$$

The objective function g is concave (opposite of a support function):

$$
\begin{aligned}
g(\lambda, \mu) & =\inf _{x} L(x, \lambda, \mu) \\
& =\inf _{x}\left\{\nu \cdot u_{x}\right\} \\
& =-\sup _{x}\left\{(-\nu) \cdot u_{x}\right\} \\
& =-\delta_{S}(-\nu)
\end{aligned}
$$

Geometrical intuition: weak vs strong duality

Outline

(1) Introduction

(2) Simplex algorithm
(3) Duality
(4) Convexity
(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
(6) Interior Point Method
(7) Semidefinite Programming (SDP)
(8) SDP Relaxation

Convex problems

- f_{0} is convex
- $f_{i}, i=1, \ldots, m$ are convex
- $h_{j}, j=1, \ldots, p$ are linear in $x: h_{j}(x)=A_{j} \cdot x-b_{j}$

$$
\begin{array}{cl}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, i=1, \ldots, m \tag{p}\\
& A_{j} \cdot x-b_{j}=0, j=1, \ldots, p
\end{array}
$$

Slater's condition (constraint qualifications for convex problems) If the primal is strictly feasible (i.e. there exists an x such that $f_{i}(x)<0, i=1, \ldots, m$, and $\left.A_{j} \cdot x-b_{j}=0, j=1, \ldots, p\right)$, then strong duality holds $\mathfrak{d}^{\star}=\mathfrak{p}^{\star}<+\infty$.

Complementarity (under Slater's condition)

Let $\left(\lambda^{*}, \mu^{*}\right)$ be the optimum dual and x^{*} be the optimum primal:

- x^{*} is feasible: $\begin{cases}f_{i}\left(x^{*}\right) \leq 0 & i=1, \ldots, m \\ A_{j} \cdot x^{*}-b_{j}=0 & j=1, \ldots, p\end{cases}$
- $\left(\lambda^{*}, \mu^{*}\right)$ is feasible: $\lambda^{*} \geq 0$

As a consequence of the strong duality, we have in addition:

$$
\mathfrak{d}^{\star}=g\left(\lambda^{*}, \mu^{*}\right)=\inf _{x} L\left(x, \lambda^{*}, \mu^{*}\right)=f_{0}\left(x^{*}\right)=p^{\star}
$$

Therefore, by definition of the infimum

$$
\begin{aligned}
f_{0}\left(x^{*}\right)=\inf _{x} L\left(x, \lambda^{*}, \mu^{*}\right) & \leq L\left(x^{*}, \lambda^{*}, \mu^{*}\right) \\
& =f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j}\left(A_{j} \cdot x^{*}-b_{j}\right) \\
& =f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)
\end{aligned}
$$

Complementarity (cont'd)

$$
\left.\begin{array}{l}
0 \leq \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right) \\
\lambda_{1}^{*}, \ldots, \lambda_{m}^{*} \geq 0 \\
f_{1}\left(x^{*}\right), \ldots, f_{m}\left(x^{*}\right) \leq 0
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0 \\
\lambda_{i}^{*} \geq 0 \\
-f_{i}\left(x^{*}\right) \geq 0
\end{array} \quad i=1, \ldots, m\right.
$$

Complementarity conditions

$$
0 \leq \lambda_{i}^{*} \perp-f_{i}\left(x^{*}\right) \geq 0, \quad i=1, \ldots, m
$$

Differentiability

When $f_{0}, f_{1}, \ldots, f_{m}$ are continuously differentiable (i.e. C^{1}), the optimum x^{*} has also to satisfy the following condition:

$$
\nabla_{x} L\left(x^{*}, \lambda, \mu\right)=\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j} A_{j}=0
$$

Recall that

$$
\nabla_{x} L=\left(\frac{\partial L}{\partial x_{1}}, \ldots, \frac{\partial L}{\partial x_{m}}\right)
$$

Karush-Kuhn-Tucker Conditions

Definition

For an optimization problem (\mathfrak{p}) with Lagrangian L and such that f_{0}, $f_{1}, \ldots, f_{m}, h_{1}, \ldots, h_{p}$ are C^{1}, x^{*} verify the KKT conditions if and only if there exists some $\lambda \in \mathbb{R}^{m}$ and $\mu \in \mathbb{R}^{p}$ such that:
(1) Primal feasibility: $\begin{cases}f_{i}\left(x^{*}\right) \leq 0 & i=1, \ldots, m \\ h_{j}\left(x^{*}\right)=0 & j=1, \ldots, p\end{cases}$
(2) Dual feasibility: $\lambda \geq 0$
(3) Complementarity $\lambda_{i} f_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m$
(4) Stationarity: $\nabla_{x} L\left(x^{*}, \lambda, \mu\right)=0$

Under constraint qualifications, KKT conditions are only necessary.

Convex problems

Under Slater's condition, KKT conditions are also sufficient: x^{*} is optimum if and only if KKT conditions hold.

Outline

(1) Introduction
(2) Simplex algorithm
(3) Duality
(4) Convexity
(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
(6) Interior Point Method
(7) Semidefinite Programming (SDP)
(8) SDP Relaxation

Assumptions

$$
\begin{array}{cl}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, i=1, \ldots, m \tag{p}\\
& A_{j} \cdot x-b_{j}=0, j=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex and twice continuously differentiable
- Slater's condition holds: the problem is strictly feasible
- Thus, strong duality holds and \mathfrak{p}^{\star} is finite and attained for some x^{*} that satisfy KKT conditions

Examples: Linear, Quadratic, Geometric Programming (LP, QP, GP)

Solving KKT system

KKT conditions

x^{*} is an optimum for (\mathfrak{p}) if and only if

- $A_{j} \cdot x^{*}-b_{j}=0, j=1, \ldots, p$
- $0 \leq \lambda_{i}^{*} \perp-f_{i}\left(x^{*}\right) \geq 0, \quad i=1, \ldots, m$
- $\nabla_{x} L\left(x^{*}, \lambda, \mu\right)=0$

We cannot solve such system numerically as it combines equality and inequality constraints.

Main idea

Design a sequence of optimization problems that we can solve and such that their solutions converges towards the optimum of the original problem.

Non smooth (but convex) reformulation

To get rid of the (problematic) inequality constraints $f_{i}(x) \leq 0$, one can hide them inside indicator functions.

Indicator function

The indicator function of \mathbb{R}_{-}is a convex function defined as follows:

$$
\mathcal{I}(u)=\left\{\begin{array}{cc}
0 & \text { if } u \leq 0 \\
+\infty & \text { otherwise }
\end{array}\right.
$$

The problem (p) becomes then equivalent to

$$
\begin{array}{ll}
\min & f_{0}(x)+\sum_{i=1}^{m} \mathcal{I}\left(f_{i}(x)\right) \\
\text { s.t. } & A_{j} \cdot x-b_{j}=0, \quad j=1, \ldots, p \tag{I}
\end{array}
$$

Smooth approximation

we can approximate the indicator function \mathcal{I} smoothly using a sequence of logarithmic barriers:

$$
\varphi_{t}: \mathbb{R} \rightarrow \mathbb{R}, \quad u \mapsto \begin{cases}-\frac{1}{t} \log (-u) & \text { if } u<0 \\ +\infty & \text { otherwise }\end{cases}
$$

As t increases, $\varphi_{t}(u)$ remains close to 0 for a fixed $u<0$; as u gets close to 0 (from the left), $\varphi_{t}(u)$ diverges to $+\infty$ for any arbitrarily big fixed t. Let

$$
\phi_{t}(x)=\sum_{i=1}^{m} \varphi_{t}\left(f_{i}(x)\right)=-\frac{1}{t} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right)
$$

Logarithmic barrier approximation
The idea is to approximate \mathfrak{p}^{\star} using the sequence $\mathfrak{p}_{t}^{\star}(t>0)$:

$$
\begin{array}{cl}
\min & f_{0}(x)+\phi_{t}(x) \\
\text { s.t. } & A_{j} \cdot x-b_{j}=0, \quad j=1, \ldots, p \quad\left(\mathfrak{p}_{t}\right)
\end{array}
$$

Logarithmic barrier functions

Fix a positive t.

$$
\phi_{t}(x)=-\frac{1}{t} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom}_{t} \phi=\left\{x \mid f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}
$$

- ϕ_{t} is convex as a function of x (composition rule applied to φ_{t} and f_{i})
- ϕ_{t} twice continuously differentiable (with respect to x)

$$
\begin{aligned}
\nabla \phi_{t}(x) & =\sum_{i=1}^{m} \frac{1}{-t f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{-t f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{t}+\frac{1}{t} \sum_{i=1}^{m} \frac{1}{-t f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Logarithmic barriers: Example

$$
\begin{aligned}
\phi(x)=-\log \left(-\left(-x_{1}-x_{2}\right)\right)- & \log (-(-2 \times 1+x 2-1)) \\
& -\log (-(3 \times 1+x 2-10))-\log (\times 2+1)
\end{aligned}
$$

KKT conditions for \mathfrak{p}_{t}

Since \mathfrak{p} satisfies Slater's condition, so does \mathfrak{p}_{t} for any $t>0$: strong duality holds $\left(\mathfrak{d}_{t}^{\star}=\mathfrak{p}_{t}^{\star}<+\infty\right)$.

KKT conditions

Fix $t>0 . x^{*}(t)$ is an optimum for $\left(\mathfrak{p}_{t}\right)$ if and only if

- $x^{*}(t) \in \operatorname{dom} \phi_{t}$
- $A_{j} \cdot x^{*}(t)-b_{j}=0, j=1, \ldots, p$
- $\nabla_{x} L_{t}\left(x^{*}(t), \mu(t)\right)=0$

Observe that, by construction, the system has no complementarity conditions since the feasible set of $\left(\mathfrak{p}_{t}\right)$ has no inequality constraints.

Stationarity: $\nabla_{x} L_{t}$ vs $\nabla_{x} L$

$$
\nabla_{x} L\left(x^{*}, \lambda, \mu\right)=\nabla f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}\left(x^{*}\right)+\sum_{j=1}^{p} \mu_{j} A_{j}=0
$$

For $x \in \operatorname{dom} \phi_{t}$:

$$
\begin{aligned}
\nabla_{x} L_{t}\left(x^{*}(t), \mu(t)\right) & =\nabla f_{0}\left(x^{*}(t)\right)+\nabla \phi_{t}\left(x^{*}(t)\right)+\sum_{j=1}^{p} \mu_{j}(t) A_{j} \\
& =\nabla f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \underbrace{\frac{1}{-t f_{i}\left(x^{*}(t)\right)}}_{\lambda_{i}(t)} \nabla f_{i}\left(x^{*}(t)\right)+\sum_{j=1}^{p} \mu_{j}(t) A_{j} \\
& =0
\end{aligned}
$$

$\lambda_{i}(t)$ and $\mu_{j}(t)$ seem to be natural candidates for λ_{i} and μ_{j} respectively.

Checking KKT conditions of \mathfrak{p}

Consider $\left(x^{*}(t), \lambda(t), \mu(t)\right)$ as potential candidates for $\left(x^{*}, \lambda, \mu\right)$. We need to check whether they satisfy the KKT conditions of \mathfrak{p}.

- $A_{j} \cdot x^{*}(t)-b_{j}=0$ holds thanks to the primal feasibility of $x^{*}(t)$ as an optimal solution of \mathfrak{p}_{t}
- $f_{i}\left(x^{*}(t)\right) \leq 0$ holds thanks to the strong duality of \mathfrak{p}_{t}, in particular $\mathfrak{p}_{t}^{\star}<+\infty$
- $0 \leq \lambda_{i}^{*}(t)$ holds by definition (recall that $t>0$)
- $\nabla_{x} L\left(x^{*}(t), \lambda(t), \mu(t)\right)=0$ holds also by definition of $\lambda(t)$ and $\mu(t)$

Only the complementarity is missing and we have

$$
-\lambda_{i}(t) f_{i}\left(x^{*}(t)\right)=\frac{1}{t}, \quad i=1 \ldots, m
$$

As t increases the product tends towards zero, fulfilling the complementarity at infinity.

Primal approximation

$$
\begin{gathered}
\mathfrak{d}^{\star}=g(\lambda, \mu)=\inf _{x} L(x, \lambda, \mu)=f_{0}\left(x^{*}\right)=\mathfrak{p}^{\star} \\
\mathfrak{d}_{t}^{\star}=g_{t}(\mu(t))=\inf _{x} L_{t}(x, \mu(t))=f_{0}\left(x^{*}(t)\right)+\phi_{t}\left(x^{*}(t)\right)=\mathfrak{p}_{t}^{\star} \\
\begin{aligned}
L\left(x^{*}(t), \lambda(t), \mu(t)\right) & =f_{0}\left(x^{*}(t)\right)+\sum_{i=1}^{m} \frac{1}{-t}+\sum_{j=1}^{p} \mu_{j}(t)\left(A_{j} \cdot x^{*}(t)-b_{j}\right) \\
= & f_{0}\left(x^{*}(t)\right)-\frac{m}{t} \\
f_{0}\left(x^{*}(t)\right) \geq \mathfrak{p}^{\star}=\mathfrak{d}^{\star} \geq g(\lambda(t), \mu(t)) & =\inf _{x} L(x, \lambda(t), \mu(t)) \\
& =? L\left(x^{*}(t), \lambda(t), \mu(t)\right) \\
& =f_{0}\left(x^{*}(t)\right)-\frac{m}{t}
\end{aligned}
\end{gathered}
$$

Interior point method

Start with a strictly feasible $x, t>0, \alpha>1$, and $\epsilon>0$
(1) Numerically compute $x^{*}(t)$ by solving the KKT conditions for \mathfrak{p}_{t} (Newton-based techniques)
(2) Update: $x \leftarrow x^{\star}(t)$
(3) If $\frac{m}{t}<\epsilon$, halt (Stopping criterion)
(4) Otherwise, increase $t \leftarrow \alpha t$ and repeat

- Halts with $f_{0}\left(x^{*}(\bar{t})\right) \sim \mathfrak{p}^{\star} \pm \epsilon$
- Several heuristics exist for the choice of α and the initial t

Central path: $\left\{x^{\star}(t) \mid t>0\right\}$

Example of a central path (cont'd)

Outline

(1) Introduction

(2) Simplex algorithm
(3) Duality
(4) Convexity
(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
(6) Interior Point Method
(7) Semidefinite Programming (SDP)
(8) SDP Relaxation

SDP: Generalized LP

Linear programming

$$
\begin{array}{cl}
\min & c \cdot x \\
\text { s.t. } & A_{j} \cdot x=b_{j}, \\
& 1 \leq j \leq p \tag{d}\\
& x \in \mathbb{R}_{+}^{n}
\end{array}
$$

$$
\begin{aligned}
\max & -b \cdot \mu \\
\text { s.t. } & A_{i}^{t} \cdot \mu+c_{i} \geq 0 \\
& 1 \leq i \leq n
\end{aligned}
$$

Semidefinite programming

- \mathcal{S}^{n} : set of $n \times n$ symmetric matrices
- $C, A_{j} \in S^{n}, b_{j} \in \mathbb{R}, 1 \leq j \leq p$

$$
\begin{array}{ll}
\min & C \cdot X \\
\text { s.t. } & A_{j} \cdot X=b_{j}, \tag{p}\\
& 1 \leq j \leq p \\
& X \in \mathcal{S}_{+}^{n}
\end{array}
$$

- \mathcal{S}_{+}^{n} : positive semidefinite matrices
- $X \in \mathcal{S}_{+}^{n}$ also denoted as $X \succeq 0$
- (•): Frobenius inner product over \mathcal{S}^{n}
- $A \cdot B=\operatorname{tr}\left(A^{t} B\right)$ (tr for the trace)

Remarks

SDP generalizes LP in the following sense: instead of linear combinations of real variables $\left(x_{i}\right), 1 \leq i \leq n$, seen as coordinates of one vector x, SDP allows linear combinations of inner products $\left(X_{i} \cdot X_{j}\right), 1 \leq i, j \leq n$, seen as components of one symmetric matrix X (where X_{1}, \ldots, X_{n} are vectors of \mathbb{R}^{n}).

Two equivalent definitions for $M \in \mathcal{S}^{n}$ to be positive semidefinite:
(i) M is a Gramian matrix: $\exists u \in \mathbb{R}^{n} . \quad M=u u^{t}$
(ii) Non negative quadratic form: $\forall v \in \mathbb{R}^{n} . \quad v \cdot M v=M \cdot v v^{t} \geq 0$

The Frobenius inner product has a related norm:

$$
\|M\|^{2}=M \cdot M=\sum_{1 \leq i, j \leq n} m_{i, j}^{2}
$$

Infimum over symmetric matrices

Let $X, M \in \mathcal{S}^{n}$, then

$$
\inf _{X} X \cdot M= \begin{cases}0 & \text { if } M=0 \\ -\infty & \text { otherwise }\end{cases}
$$

- If $M \succ 0$ or $M \prec 0$, then take $X=-t M$. Then, $X \cdot M=-t\|M\|^{2}$ and make t goes towards $+\infty$
- If M is undefinite, then there exists $v \in \mathbb{R}^{n}$ such that $v \cdot M v<0$. Then take $X=t v v^{t}$, thus:

$$
M \cdot X=M \cdot\left(t v v^{t}\right)=t(v \cdot M v)<0
$$

and make t goes towards $+\infty$.
So the only choice left is $M=0$, in which case the inf is trivial.

Dual SDP

Lagrangian $\left(\Lambda \in \mathcal{S}_{+}^{n}\right)$

$$
\begin{align*}
& \quad L(X, \Lambda, \mu)=C \cdot X+\Lambda \cdot(-X)+\sum_{j=1}^{p} \mu_{j}\left(A_{j} \cdot X-b_{j}\right) \\
& g(\Lambda, \mu)=\inf _{X \in \mathcal{S}^{n}} L(X, \Lambda, \mu)=-b \cdot \mu+\inf _{X \in \mathcal{S}^{n}} X \cdot\left(C-\Lambda+\sum_{j=1}^{p} \mu_{j} A_{j}\right) \\
& \max \quad-b \cdot \mu \\
& \text { s.t. } \quad C-\Lambda+\sum_{j=1}^{p} \mu_{j} A_{j}=0, \quad(\mathfrak{d}) \quad \begin{array}{ll}
\max \quad-b \cdot \mu \\
\text { s.t. } \quad C+\sum_{j=1}^{p} \mu_{j} A_{j} \succeq 0, \quad(\mathfrak{d}) \\
& \Lambda \succeq 0
\end{array} \quad \text { Linear Matrix Inequality } \tag{d}
\end{align*}
$$

KKT conditions

- SDP is a convex problem
- Strong duality holds under Slater's condition
- $\nabla_{X} C \cdot X=C$
X^{*} satisfy the KKT conditions for the primal SDP if and only if there exists $\Lambda \in \mathcal{S}^{n}, \mu \in \mathbb{R}^{p}$ such that:
(1) Primal feasibility: $A_{j} \cdot X^{*}=b_{j}, 1 \leq j \leq p$
(2) Primal feasibility: $X^{*} \succeq 0$
(3) Dual feasibility: $\Lambda \succeq 0$
(4) Complementarity: $\Lambda \cdot X^{*}=0$
(5) Stationarity: $\nabla_{X} L\left(X^{*}, \Lambda, \mu\right)=C-\Lambda+\sum_{j=1}^{p} \mu_{j} A_{j}=0$

Interior point method

Logarithmic barrier for the positive orthant of \mathbb{R}^{n}
For $x>0: \phi(x)=-\sum_{i=1}^{n} \log \left(x_{i}\right)$
Logarithmic barrier for the positive orthant of \mathcal{S}^{n}
For $X \succ 0: \phi(X)=-\log (\operatorname{det} X)$
Central path
$\left\{X^{*}(t) \mid t>0\right\}$, where $x^{*}(t)$ is the optimum of the following parametric convex problem:

$$
\begin{array}{ll}
\min & C \cdot X+\frac{1}{t} \phi(X) \\
\text { s.t. } & A_{j} \cdot X-b_{j}=0,1 \leq j \leq p \quad\left(\mathfrak{p}_{t}\right)
\end{array}
$$

Generalized convex problems

$$
\begin{array}{cl}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \preceq \kappa_{i} 0, i=1, \ldots, m \\
& A_{j} \cdot x-b_{j}=0, j=1, \ldots, p
\end{array}
$$

- x in a vector space V equipped with an inner product
- $f_{0}: V \rightarrow \mathbb{R}$ convex and real valued
- $f_{i}: V \rightarrow V, i=1, \ldots, m$, convex
- $f_{i}(x) \preceq K_{i} 0$ means that $-f_{i}(x) \in K_{i}$ for some proper cone K_{i} of V
- $f_{0}, f_{1}, \ldots, f_{m}$ twice continuously differentiable (possibly in a weak sense)
- $A_{j} \in V, b_{j} \in \mathbb{R}$
- Under Slater's condition strong duality holds

Generalized logarithmic barrier for proper cones

$\phi: V \rightarrow \mathbb{R}$ is a generalized logarithm for the proper cone $K \subseteq V$ if:

- ϕ is defined over the interior of K
- $\nabla^{2} \phi(x) \prec_{\mathcal{S}_{+}^{n}} 0$ for $0 \prec_{K} x$
- $\phi(s x)=\phi(x)+r \log (s)$ for all $0 \prec_{K} x$ and $s>0$
- r is the degree of ϕ

Examples:

- $K=\mathbb{R}_{+}, \phi(x)=\log (x)$ (classical logarithm)
- $K=\mathbb{R}_{+}^{n}, \phi(x)=\sum_{i=1}^{n} \log \left(x_{i}\right)(r=n)$
- $K=S_{+}^{n}: \phi(x)=\log (\operatorname{det} x)(r=n)$

Observe that $-\phi$ is convex (ϕ is concave)

Solvers

- Matlab packages: SeDuMi, SDPT3
- Open source: CSDP

Environment

- Matlab software: CVX, YALMIP, SoSTools
- Open source: coin-or.org

Outline

(1) Introduction
(2) Simplex algorithm
(3) Duality
(4) Convexity
(5) Karush-Kuhn-Tucker (KKT) Conditions (Convex Problems)
(6) Interior Point Method
(7) Semidefinite Programming (SDP)

8 SDP Relaxation

Sum-of-squares polynomials

Let $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial over the reals.
h is non-negative if and only if $\forall x \in \mathbb{R}^{n} . h(x) \geq 0$

Sum-of-squares (SoS)

A polynomial h is a sum of squares if and only if there exists polynomials $g_{i}, 1 \leq i \leq m$, such that:

$$
h=\sum_{i=1}^{m} g_{i}^{2}
$$

A SoS polynomial is necessarily non-negative. The converse does not hold in general (Motzkin polynomial):

$$
h\left(x_{1}, x_{2}\right)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-3 x_{1}^{2} x_{2}^{2}+1
$$

h is non-negative and is not a SoS.

Polynomials as scalar products

Take a polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree $\leq 2 d$.

- We can write h as a scalar product $H \cdot X$
- H is a symmetric matrix (not unique)
- X is symmetric and semidefinite positive (not unique)
X can be seen as a Gramian matrix formed as the (matrix) product of the vector χ and its transpose, where χ denote a vector of monomials of n variables of total degree less than d.

Example

$$
x_{1}^{4}-x_{1}^{2} x_{2}^{2}+x_{2}^{4}=\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)}_{H} \cdot(\underbrace{\left(\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)}_{\chi}\left(\begin{array}{lll}
x_{1}^{2} & x_{1} x_{2} & x_{2}^{2}
\end{array}\right))
$$

SoS is positivedefiniteness

Proposition

A polynomial h is SoS if and only if $H \succeq 0$.

Proof. If $H \succeq 0$ then there exists a matrix U such that $H=U^{t} U$. Thus

$$
h=H \cdot X=\left(U^{t} U\right) \cdot\left(\chi \chi^{t}\right)=(U \chi) \cdot(U \chi)=\|U \chi\|^{2} .
$$

If h is SoS , then there exist a list of polynomials g_{i} such that $h=\sum_{i} g_{i}^{2}$. The monomials vector χ is then formed by all the (distinct) monomials appearing in all the g_{i}. The rows of the matrix U are formed by the coefficients of the polynomials g_{i}.

SoS problems are LMI

Example (cont'd)

$$
x_{1}^{4}-x_{1}^{2} x_{2}^{2}+x_{2}^{4}=\underbrace{\left(\begin{array}{ccc}
1 & 0 & \mu_{1} \\
0 & -2 \mu_{1}-1 & 0 \\
\mu_{1} & 0 & 1
\end{array}\right)}_{H} \cdot \underbrace{\left(\begin{array}{ccc}
x_{1}^{4} & x_{1}^{3} x_{2} & x_{1}^{2} x_{2}^{2} \\
x_{1}^{3} x_{2} & x_{1}^{2} x_{2}^{2} & x_{1} x_{2}^{3} \\
x_{1}^{2} x_{2}^{2} & x_{1} x_{2}^{3} & x_{2}^{4}
\end{array}\right)}_{X}
$$

Thus, h is SoS if and only if

$$
\exists \mu_{1} . \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)+\mu_{1}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 0
\end{array}\right) \succeq 0
$$

which is an LMI problem: dual feasibility of the a dual SDP problem.

SoS reformulation of (dual) SDP

h is SoS is equivalent to solving the following dual SDP problem:
$\max 0$

$$
\text { s.t. }\left(\begin{array}{ccc}
1 & 0 & 0 \tag{d}\\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)+\mu_{1}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 0
\end{array}\right) \succeq 0
$$

Dimensions of the LMI problem

For a fixed degree d, the size of χ is

$$
\binom{n+d}{d}
$$

The size of the unknown vector of the LMI reformulation is

$$
\frac{1}{2}\binom{n+d}{d}\left(\binom{n+d}{d}+1\right)-\binom{n+2 d}{2 d}
$$

The choice of the monomials list is important:

$$
\begin{aligned}
x_{1}^{4}-x_{1}^{2} x_{2}^{2}+x_{2}^{4} & =\underbrace{\left(\begin{array}{ccc}
1 & 0 & \mu_{1} \\
0 & -2 \mu_{1}-1 & 0 \\
\mu_{1} & 0 & 1
\end{array}\right)}_{H} \cdot(\underbrace{\left(\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)}_{\chi}\left(\begin{array}{lll}
x_{1}^{2} & x_{1} x_{2} & x_{2}^{2}
\end{array}\right)) \\
& =\underbrace{\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right)}_{H^{\prime}} \cdot(\underbrace{\binom{x_{1}^{2}}{x_{2}^{2}}}_{\chi^{\prime}}\left(\begin{array}{ll}
x_{1}^{2} & x_{2}^{2}
\end{array}\right))
\end{aligned}
$$

SDP relaxation of polynomial problems

$$
\begin{array}{ll}
\min & p(x) \\
\text { s.t. } & h_{j}(x)=0, \\
& 1 \leq j \leq p
\end{array}
$$

- non-convex
- size of x : n

$$
\begin{array}{ll}
\min & C \cdot X \\
\text { s.t. } & A_{j} \cdot X=b_{j} \tag{p}\\
& 1 \leq j \leq p \\
& X \in \mathcal{S}_{+}^{n}
\end{array}
$$

- convex
- size of $X:\binom{n+d}{d} \times\binom{ n+d}{d}$
- $\mathfrak{p}^{\star} \leq p(x)$

Lasserre hierarchy

Increasing d gives tighter and tighter approximations for the optimal value of the original non-convex problem.

SDP relaxation of discrete problems

Max-cut problem
Let $G=(V, E)$ be a graph. The max-cut problem is the following discrete optimization problem

$$
\begin{array}{ll}
\max & \sum_{(i, j) \in E} \frac{1-v_{i} v_{j}}{2} \\
\text { s.t. } & v_{i}=\{-1,1\} \quad\left(v_{i} \in V\right)
\end{array}
$$

SDP relaxation (Goemans and Williamson 95)
v_{i} are now considered vectors, and $v_{i} v_{j}$ becomes $v_{i} \cdot v_{j}$. Let $X=v v^{t}$.

$$
\begin{aligned}
-\min & C \cdot X \\
\text { s.t. } & \operatorname{diag}(X)=1, \quad(\mathfrak{p}) \\
& X \succeq 0
\end{aligned}
$$

References

- Convex Optimization. Stephen Boyd and Lieven Vandenberghe. Cambridge University Press
- Recherche Opérationnelle: aspects mathématiques et applications. Frédéric Bonnans and Stéphane Gaubert. Ecole Polytechnique
- EE364A (Stephen Boyd, Stanford), EE236B (UCLA), Convex Optimization
- www.stanford.edu/class/ee364a
- www.ee.ucla.edu/ee236b/

