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Optimization problems
Definitions

• Find an optimal value of a function with respect to some constraints

• Optimum: minimum or maximum

• The function to optimize is called the objective or cost function

• The constraints form a set called the feasible set
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Standard form
... at least for this course

min /max f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

• x denotes a point in some vector space (e.g. Rn)

• All functions are real valued: their codomain is R
• The codomain of the constraints fi , 1 ≤ i ≤ m, will be generalized

later, together with the order relation (≤)

Optimal value:

p? = inf / sup

f0(x) |
m∧
i=1

fi (x) ≤ 0 ∧
p∧

j=1

hj(x) = 0
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Inner product

• Let ♦ and � be elements of some vector space V

• Rn, Mn, Sn, etc.

• An inner product is a bilinear function from V × V to R

♦ ·�
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Linear programming

min c · x
s.t. Ax ≤ b

min c · x
s.t. Ax = b

x ≥ 0

• c, x ∈ Rn

• c · x is the inner product of c and x

• A an m × n matrix (over the reals)

• b ∈ Rm

• x , y ∈ Rk , x ≤ y means y − x ∈ Rk
+ (non negative orthant)
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Saturated formulation

∃x ∈ Rn.Ax ≤ b ←→ ∃s ∈ Rk
+.A

′s = b

Saturation Procedure

• add 2 fresh variables for each variable

• add a fresh variable for each row of A

• k = 2n + #rows of A

Example

(
1 0

)(x1

x2

)
≤ 1, in R2 ← x1=s1−s2

x2=s3−s4
→

(
1 −1 1

)s1

s2

s5

 = 1, in R5
+
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Vertices and Bases (1/2)

x ∈ Rn
+, Ax = b, rank(A) = m ≤ n (empty polyhedron otherwise).

Base (algebraic vertex)

Let {B,N} be a partition of {1, . . . , n}. B is a base if and only if
|B| = rank(AB) where AB is the submatrix of A with columns in B.
B is non-degenerate if |B| = m, and degenerate otherwise (|B| < m).

Example

For A =

(
1 1 0
0 1 −1

)
, {1} and {3} are degenerate bases while {i , j},

1 ≤ i < j ≤ 3, are non-degenerate.

Proposition

Let B be a base. The unique point v (if any) in the polyhedron such that
vi = 0 for all i ∈ N (i.e. i 6∈ B) is a vertex (facet of dimension zero).
(Such a point may not exist since A−1

B b has to be non-negative.)
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Vertices and Bases (2/2)

(Weak) Correspondence

• Each vertex has at least one base.

• Each base has at most one vertex.

Examples

• The polyhedron x1, x2 ∈ R+,−x1 + x2 = 1 has no vertex associated
with the (non-degenerate) base B = {1} because A−1

B b < 0.

• The polyhedron x1, x2 ∈ R+, x1 + x2 = 0 has the same vertex, (0, 0)
associated with two (non-degenerate) bases: B = {1} and B′ = {2}.
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Local Considerations

Let B be a base associated with the vertex v . For simplicity, suppose that
B is non-degenerate so that AB is invertible. Thus, for all x = (xB xN)t :

Ax =
(
AB AN

)(xB
xN

)
= ABxB +ANxN = b =⇒ xB = A−1

B (b−ANxN)

The above equation has a solution in the non-negative orthant, namely v .
Suppose that the polyhedron is not reduced to a point. Then, there exists
a positive real number ε such that:

∀xN ∈ R|N|+ ‖xN‖∞ ≤ ε =⇒ xB = A−1
B (b − ANxN) ≥ 0

We next solve the original optimization problem locally around v .
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Reduction

min c · x
s.t. Ax = b

x ≥ 0

min r · xN + a

s.t. xN ≥ 0

‖xN‖∞ ≤ ε

c · x =

(
cB
cN

)
·
(

A−1
B (b − ANxN)

xN

)
=
(
cN − At

NA−tB cB
)︸ ︷︷ ︸

r

·xN + cB · A−1
B b︸ ︷︷ ︸

a

• As long as ‖xN‖∞ ≤ ε, the point (A−1
B (b − ANxN), xN) is feasible

• r · xN is called the reduced cost function
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Optimality criterion

• We seek a displacement that locally decreases r · xN
• Suppose that there exists a index j such that rj < 0

• Consider a displacement along this jth coordinate

• Let ej denote the jth vector of the canonical orthonormal basis of R|r |

• Let ρ be a positive real number: xN ← vN + ρej

r · xN = r · (vN + ρej) = r · vN + ρr · ej = r · vN + ρrj < r · vN

Optimality criterion: r ≥ 0

• If r ≥ 0: no possible minimization for r · xN since xN ≥ 0

• The only local minimum is xN = vN = 0

• which is also global by convexity
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Unboundedness criterion

• Recall that locally xB = A−1
B (b − ANxN)

• So the update xN ← vN + ρej leads to

xB ← A−1
B (b − AN(vN + ρej)) = A−1

B b︸ ︷︷ ︸
vB

−A−1
B AN vN︸︷︷︸

0

−ρA−1
B ANej︸ ︷︷ ︸
δB

• Since xB ≥ 0, we get vB ≥ ρδB
• This gives an upper bound for ρ:

ρ ≤ min
i

{
(vB)i
(δB)i

| (δB)i > 0

}

Unboundedness criterion: δB ≤ 0
ρ can be chosen arbitrarily big and the minimum is −∞
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Geometric intuitions

When xN ← vN + ρej :

• The jth component of xN becomes strictly positive

• When ρ increases, x moves along an edge (a facet of dimension 1)

• If ρ is unbounded, the minimum is −∞ (halt)

• If ρ is bounded, one component (say the ith) of xB vanishes when ρ
reaches its upper bound: we reach a new vertex.

• update the base: let (B′,N′) = ((B \ {i}) ∪ {j}, (N \ {j}) ∪ {i})
• If rank(AB′) = m, then B′ is a new non-degenerate base

• Otherwise, rank(A′B) < m, and we can remove some elements from
B′ (other than j) to make it a non-degenerate base

• repeat if the optimality criterion (r ≥ 0) is not met.
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Simplex algorithm

1 Start at a vertex (base)

2 If the optimality criterion is satisfied, halt: the problem is solved

3 Otherwise, move along an edge that minimizes the reduced cost function

4 If the unboundedness criterion is satisfied, halt: the problem is unbounded

5 Otherwise, we reach a new vertex and we loop back to the first step

Does it always terminate?
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Example

min x1 − x2

s.t. x1 + x2 = 0

x ≥ 0

• Start with the base B = {1}, N = {2}

• v =

(
0
0

)
, AB = AN =

(
1
)

• r = cN − At
NA−tB cB =

(
−2
)

and δB = A−1
B ANej =

(
1
)

• update xN ← 0 + ρ, xB ← 0− ρ (ρ = 0)

• So the algorithm is updating the base without changing the
vertex
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Lagrangian function

The primal problem is the minimization problem (by convention).

min f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m (p)

hj(x) = 0, j = 1, . . . , p

Intuition: inject the constraint into the objective function.
The Lagrangian associated to (P) is defined by:

L(x , λ, µ) = f0(x) +
m∑
i=1

λi fi (x) +

p∑
j=1

µjhj(x),

• No extra constraints for x (as long as the functions are defined)

• λi , i = 1, . . . ,m, are non negative real numbers

• µj , j = 1, . . . , p, are unconstrained real numbers
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Lagrangian’s saddle points

L(x , λ, µ) = f0(x) +
m∑
i=1

λi fi (x) +

p∑
j=1

µjhj(x) .

• If there exists an x̄ and an index i such that fi (x̄) > 0, then L(x̄ , λ, µ)
is unbounded since λi can be chosen arbitrarily big.

• If there exists an x̄ and an index j such that hj(x̄) 6= 0, then
L(x̄ , λ, µ) is also unbounded since µj can be chosen arbitrarily big or
small depending on the sign of hj(x̄).

sup
λ≥0,µ

L(x , λ, µ) =

{
f0(x) if

∧
i fi (x) ≤ 0 ∧

∧
j hj(x) = 0

+∞ otherwise

Solving (p) is then equivalent to minimizing supλ≥0,µ L(x , λ, µ) over x :

p? = inf
x

sup
λ≥0,µ

L(x , λ, µ)
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Weak duality

In general, if L is a real valued function defined over the product X × Y ,
then

sup
y

inf
x

L(x , y) ≤ inf
x

sup
y

L(x , y)

Proof. Let (x̄ , ȳ) ∈ X × Y , then, by definition of inf and sup

inf
x

L(x , ȳ) ≤ L(x̄ , ȳ) ≤ sup
y

L(x̄ , y)

So supy L(x̄ , y) is an upper bound of infx L(x , ȳ). Since the sup is the smallest
upper bound by definition, one gets

sup
ȳ

inf
x

L(x , ȳ) ≤ sup
y

L(x̄ , y)

But then supȳ infx L(x , ȳ) is a lower bound for supy L(x̄ , y). Since, dually, the inf
is the biggest lower bound, one gets the desired result:

sup
ȳ

inf
x

L(x , ȳ) ≤ inf
x̄

sup
y

L(x̄ , y) .
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Weak duality applied to L

By the weak duality, we get a lower bound of the optimal value p?:

d? := sup
λ≥0,µ

inf
x

L(x , λ, µ) ≤ inf
x

sup
λ≥0,µ

L(x , λ, µ) = p?

where d? denotes the objective value of a distinct, yet related, optimization
problem, (d), called the dual problem, and defined by
supλ≥0,µ infx L(x , λ, µ), for the exact same Lagrangian L of (p).

max g(λ, µ) := inf
x

L(x , λ, µ)

s.t. λi ≥ 0, i = 1, . . . ,m (d)
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Duality properties

• The evaluation of the dual cost function on any feasible point of the
dual problem bounds from below p? (primal optimum):

∀(λ, µ) ∈ Rm
+ × Rp. g(λ, µ) ≤ p?

• If the primal is unbounded (p? = −∞) then the dual is unfeasible

• If the dual is unbounded (d? = +∞) then the primal is unfeasible

• The primal and dual cannot be unbounded simultaneously

• The primal and the dual can be both unfeasible (−∞ ≤ +∞)

min − x

s.t. 0x + 1 ≤ 0 (p)

max λ

s.t. 0λ− 1 = 0 (d)
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Weak vs. Strong duality

Weak duality: Always true

d? ≤ p?

Strong duality: Not true in general

d? = p?

Sufficient conditions under which the strong duality holds are known as
constraint qualifications.
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Example: duality for linear problems

• f0(x) = c · x for some fixed vector c ∈ Rn

• fi (x) = −xi , i = 1, . . . , n (m = n in this case)

• hj(x) = Aj · x − bj , j = 1, . . . , p, for some fixed Aj ∈ Rn and bj ∈ R

L(x , λ, µ) = c · x +
n∑

i=1

λi (−xi )︸ ︷︷ ︸
−λ·x

+

p∑
j=1

µj(Aj · x − bj)︸ ︷︷ ︸
µ·(Ax−b)

The Lagrangian L could be rearranged as follows (recall that

Ax · y = x · Aty , where At denotes the transpose of the matrix A):

L(x , λ, µ) = −b · µ+ x · (Atµ+ c − λ)

and we get:

inf
x

L(x , λ, µ) =

{
−b · µ if Atµ+ c − λ = 0
−∞ otherwise
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Example (cont’d)

min c · x
s.t. Ax = b (p)

x ≥ 0

max − b · µ
s.t. Atµ+ c − λ = 0 (d)

λ ≥ 0

There are several possible formulations, for instance:

min c · x
s.t. Ax ≤ b (p)

max − b · λ
s.t. Atλ+ c = 0 (d)

λ ≥ 0

In this case (everything is linear), they are all dual of each other!
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Optimality criterion for the simplex algorithm

The reduced problem has the form (ε > 0, |N| = k):

min r · xN

s.t.

(
−Ik
Ik

)
xN ≤

(
0
ε

)
(p)

max −
(

0
ε

)
·
(
λ1

λ2

)
= −ε · λ2

s.t.
(
−Ik Ik

)(λ1

λ2

)
+ r = −λ1 + λ2 + r = 0 (d)

λ1 ≥ 0, λ2 ≥ 0

So λ∗2 = 0 and r = λ∗1. Thus r ≥ 0 which is the optimality criterion.
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Properties of the Dual Problem

• The objective function g(λ, µ) is concave (to be proven later)

• The feasible set is convex
• λ belongs to the non negative orthant Rm

+

• µ is unconstrained

What is convexity?
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Convexity

• Intuition: A set C is convex if and only if, for any two points in C ,
the shortest path that links these two points is also entirely in C .

• A point in a vector space is a vector and one can define scalar
multiplication, addition etc.

• In these settings, C is convex if and only if, for all c1, c2 ∈ C , for all
λ ∈ [0, 1], λc1 + (1− λ)c2 is also in C .

Convex Non convex
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Convex functions

Definition: The epigraph of a function f : D → R is defined by

epi(f ) := {(x , y) | f (x) ≤ y} ⊂ D × R

• f is convex if and only if its epigraph is a convex set

• f is concave if and only if −f : x 7→ −f (x) is convex

Examples:

• f : x 7→ x2 is convex (cf. left figure in the previous slide)

• f : x 7→ x3 + x2 is not convex (cf. right figure in the previous slide)
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Properties of convex functions

• ∀λ ∈ [0, 1]. ∀x , y . f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

• Intuition: the image of a point in the segment joining x and y is
somewhere below the segment joining f (x) and f (y)

• Any local minimum of f is also a global minimum

• One can define a weak notion of differentiability over convex functions

• The sub-differential of f at x is defined by the following set:

∂f (x) := {z ∈ Rn | ∀t ∈ Rn. f (t) ≥ f (x) + z · (t − x)}

where x · y denotes the usual scalar product over Rn

• Intuition: the sub-differential at x is the set of all affine functions
that touches the graph of f only at x

• Example: the absolute value function is non-differentiable at 0 in the
usual sense, but it is sub-differentiable, ∂f (0) = [−1, 1]
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Support function

Let C be any non-empty subset of a vector space equipped with an inner
product denoted by (·).

Support function of a set

δC (x) := sup
a∈C
{x · a}

• δC is defined for any vector x

• δC , as a function of x , is convex
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Geometrical intuition: support function
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The dual is always convex

• Let ν := (λ1, . . . , λm, µ1, . . . , µp, 1) ∈ Rm+p+1

• Let ux := (f1(x), . . . , fm(x), h1(x), . . . , hp(x), f0(x)) ∈ Rm+p+1

• Let S := {ux | fi , hj are defined } ⊆ Rm+p+1

L(x , λ, µ) = f0(x) +
m∑
i=1

λi fi (x) +

p∑
j=1

µjhj(x) = ν · ux

The objective function g is concave (opposite of a support function):

g(λ, µ) = inf
x

L(x , λ, µ)

= inf
x
{ν · ux}

= − sup
x
{(−ν) · ux}

= −δS(−ν)

K. Ghorbal (INRIA) 31 SIF M2 31 / 68



Geometrical intuition: weak vs strong duality
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Convex problems

• f0 is convex

• fi , i = 1, . . . ,m are convex

• hj , j = 1, . . . , p are linear in x : hj(x) = Aj · x − bj

min f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m (p)

Aj · x − bj = 0, j = 1, . . . , p

Slater’s condition (constraint qualifications for convex problems)

If the primal is strictly feasible (i.e. there exists an x such that
fi (x) < 0, i = 1, . . . ,m, and Aj · x − bj = 0, j = 1, . . . , p), then strong
duality holds d? = p? < +∞.
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Complementarity (under Slater’s condition)

Let (λ∗, µ∗) be the optimum dual and x∗ be the optimum primal:

• x∗ is feasible:

{
fi (x∗) ≤ 0 i = 1, . . . ,m
Aj · x∗ − bj = 0 j = 1, . . . , p

• (λ∗, µ∗) is feasible: λ∗ ≥ 0

As a consequence of the strong duality, we have in addition:

d? = g(λ∗, µ∗) = inf
x

L(x , λ∗, µ∗) = f0(x∗) = p?

Therefore, by definition of the infimum

f0(x∗) = inf
x

L(x , λ∗, µ∗) ≤ L(x∗, λ∗, µ∗)

= f0(x∗) +
m∑
i=1

λ∗i fi (x∗) +

p∑
j=1

µj(Aj · x∗ − bj)

= f0(x∗) +
m∑
i=1

λ∗i fi (x∗)
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Complementarity (cont’d)

0 ≤
∑m

i=1 λ
∗
i fi (x∗)

λ∗1, . . . , λ
∗
m ≥ 0

f1(x∗), . . . , fm(x∗) ≤ 0

 ⇐⇒


λ∗i fi (x∗) = 0
λ∗i ≥ 0 i = 1, . . . ,m
−fi (x∗) ≥ 0

Complementarity conditions

0 ≤ λ∗i ⊥ −fi (x∗) ≥ 0, i = 1, . . . ,m
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Differentiability

When f0, f1, . . . , fm are continuously differentiable (i.e. C 1), the optimum
x∗ has also to satisfy the following condition:

∇xL(x∗, λ, µ) = ∇f0(x∗) +
m∑
i=1

λi∇fi (x∗) +

p∑
j=1

µjAj = 0

Recall that

∇xL =

(
∂L

∂x1
, . . . ,

∂L

∂xm

)
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Karush-Kuhn-Tucker Conditions

Definition
For an optimization problem (p) with Lagrangian L and such that f0,
f1, . . . , fm, h1, . . . , hp are C 1, x∗ verify the KKT conditions if and only if
there exists some λ ∈ Rm and µ ∈ Rp such that:

1 Primal feasibility:

{
fi (x∗) ≤ 0 i = 1, . . . ,m
hj(x∗) = 0 j = 1, . . . , p

2 Dual feasibility: λ ≥ 0

3 Complementarity λi fi (x∗) = 0, i = 1, . . . ,m

4 Stationarity: ∇xL(x∗, λ, µ) = 0

Under constraint qualifications, KKT conditions are only necessary.

Convex problems

Under Slater’s condition, KKT conditions are also sufficient: x∗ is
optimum if and only if KKT conditions hold.
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Assumptions

min f0(x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m (p)

Aj · x − bj = 0, j = 1, . . . , p

• f0,f1, . . . , fm are convex and twice continuously differentiable

• Slater’s condition holds: the problem is strictly feasible

• Thus, strong duality holds and p? is finite and attained for some x∗

that satisfy KKT conditions

Examples: Linear, Quadratic, Geometric Programming (LP, QP, GP)
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Solving KKT system

KKT conditions
x∗ is an optimum for (p) if and only if

• Aj · x∗ − bj = 0, j = 1, . . . , p

• 0 ≤ λ∗i ⊥ −fi (x∗) ≥ 0, i = 1, . . . ,m

• ∇xL(x∗, λ, µ) = 0

We cannot solve such system numerically as it combines equality and
inequality constraints.

Main idea
Design a sequence of optimization problems that we can solve and such
that their solutions converges towards the optimum of the original problem.
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Non smooth (but convex) reformulation

To get rid of the (problematic) inequality constraints fi (x) ≤ 0, one can
hide them inside indicator functions.

Indicator function
The indicator function of R− is a convex function defined as follows:

I(u) =

{
0 if u ≤ 0

+∞ otherwise

The problem (p) becomes then equivalent to

min f0(x) +
m∑
i=1

I(fi (x))

s.t. Aj · x − bj = 0, j = 1, . . . , p (pI)
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Smooth approximation

we can approximate the indicator function I smoothly using a sequence
of logarithmic barriers:

ϕt : R→ R, u 7→
{
−1

t log(−u) if u < 0
+∞ otherwise

As t increases, ϕt(u) remains close to 0 for a fixed u < 0; as u gets close
to 0 (from the left), ϕt(u) diverges to +∞ for any arbitrarily big fixed t.
Let

φt(x) =
m∑
i=1

ϕt(fi (x)) = −1

t

m∑
i=1

log(−fi (x))

Logarithmic barrier approximation

The idea is to approximate p? using the sequence p?t (t > 0):

min f0(x) + φt(x)

s.t. Aj · x − bj = 0, j = 1, . . . , p (pt)
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Logarithmic barrier functions

Fix a positive t.

φt(x) = −1

t

m∑
i=1

log(−fi (x)), domtφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• φt is convex as a function of x (composition rule applied to ϕt and fi )

• φt twice continuously differentiable (with respect to x)

∇φt(x) =
m∑
i=1

1

−tfi (x)
∇fi (x)

∇2φ(x) =
m∑
i=1

1

−tfi (x)2
∇fi (x)∇fi (x)t +

1

t

m∑
i=1

1

−tfi (x)
∇2fi (x)
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Logarithmic barriers: Example

φ(x) = − log(−(−x1 − x2))− log(−(−2x1 + x2− 1))

− log(−(3x1 + x2− 10))− log(x2 + 1)

-1 0 1 2 3 4

-2

-1

0

1

2

3

4

5

x1

x2
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KKT conditions for pt

Since p satisfies Slater’s condition, so does pt for any t > 0: strong duality
holds ( d?t = p?t < +∞).

KKT conditions
Fix t > 0. x∗(t) is an optimum for (pt) if and only if

• x∗(t) ∈ domφt

• Aj · x∗(t)− bj = 0, j = 1, . . . , p

• ∇xLt(x∗(t), µ(t)) = 0

Observe that, by construction, the system has no complementarity
conditions since the feasible set of (pt) has no inequality constraints.
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Stationarity: ∇xLt vs ∇xL

∇xL(x∗, λ, µ) = ∇f0(x∗) +
m∑
i=1

λi∇fi (x∗) +

p∑
j=1

µjAj = 0

For x ∈ domφt :

∇xLt(x∗(t), µ(t)) = ∇f0(x∗(t)) +∇φt(x∗(t)) +

p∑
j=1

µj(t)Aj

= ∇f0(x∗(t)) +
m∑
i=1

1

−tfi (x∗(t))︸ ︷︷ ︸
λi (t)

∇fi (x∗(t)) +

p∑
j=1

µj(t)Aj

= 0

λi (t) and µj(t) seem to be natural candidates for λi and µj respectively.
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Checking KKT conditions of p

Consider (x∗(t), λ(t), µ(t)) as potential candidates for (x∗, λ, µ). We need
to check whether they satisfy the KKT conditions of p.

• Aj · x∗(t)− bj = 0 holds thanks to the primal feasibility of x∗(t) as an
optimal solution of pt

• fi (x∗(t)) ≤ 0 holds thanks to the strong duality of pt , in particular
p?t < +∞
• 0 ≤ λ∗i (t) holds by definition (recall that t > 0)

• ∇xL(x∗(t), λ(t), µ(t)) = 0 holds also by definition of λ(t) and µ(t)

Only the complementarity is missing and we have

−λi (t)fi (x∗(t)) =
1

t
, i = 1 . . . ,m

As t increases the product tends towards zero, fulfilling the
complementarity at infinity.
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Primal approximation

d? = g(λ, µ) = inf
x

L(x , λ, µ) = f0(x∗) = p?

d?t = gt(µ(t)) = inf
x

Lt(x , µ(t)) = f0(x∗(t)) + φt(x∗(t)) = p?t

L(x∗(t), λ(t), µ(t)) = f0(x∗(t)) +
m∑
i=1

1

−t
+

p∑
j=1

µj(t)(Aj · x∗(t)− bj)

= f0(x∗(t))− m

t

f0(x∗(t)) ≥ p? = d? ≥ g(λ(t), µ(t)) = inf
x

L(x , λ(t), µ(t))

=?L(x∗(t), λ(t), µ(t))

= f0(x∗(t))− m

t
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Interior point method

Start with a strictly feasible x , t > 0, α > 1, and ε > 0

1 Numerically compute x∗(t) by solving the KKT conditions for pt
(Newton-based techniques)

2 Update: x ← x?(t)

3 If m
t < ε, halt (Stopping criterion)

4 Otherwise, increase t ← αt and repeat

• Halts with f0(x∗(t̄)) ∼ p? ± ε
• Several heuristics exist for the choice of α and the initial t

Central path: {x?(t) | t > 0}
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Example of a central path (cont’d)

min x1 + x2 +
1

t
φ(x)

0 1 2 3 4

-1

0

1

2

3

4

5

x1

x2
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SDP: Generalized LP

Linear programming

min c · x
s.t. Aj · x = bj , (p)

1 ≤ j ≤ p

x ∈ Rn
+

max − b · µ
s.t. At

i · µ+ ci ≥ 0 (d)

1 ≤ i ≤ n

Semidefinite programming

min C · X
s.t. Aj · X = bj , (p)

1 ≤ j ≤ p

X ∈ Sn+

• Sn: set of n × n symmetric matrices

• C ,Aj ∈ Sn, bj ∈ R, 1 ≤ j ≤ p

• Sn+: positive semidefinite matrices

• X ∈ Sn+ also denoted as X � 0

• (·): Frobenius inner product over Sn

• A · B = tr(AtB) (tr for the trace)
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Remarks

SDP generalizes LP in the following sense: instead of linear combinations
of real variables (xi ), 1 ≤ i ≤ n, seen as coordinates of one vector x , SDP
allows linear combinations of inner products (Xi ·Xj), 1 ≤ i , j ≤ n, seen
as components of one symmetric matrix X (where X1, . . . ,Xn are vectors
of Rn).

Two equivalent definitions for M ∈ Sn to be positive semidefinite:

(i) M is a Gramian matrix: ∃u ∈ Rn. M = uut

(ii) Non negative quadratic form: ∀v ∈ Rn. v ·Mv = M · vv t ≥ 0

The Frobenius inner product has a related norm:

‖M‖2 = M ·M =
∑

1≤i ,j≤n
m2

i ,j
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Infimum over symmetric matrices

Let X ,M ∈ Sn, then

inf
X

X ·M =

{
0 if M = 0
−∞ otherwise

• If M � 0 or M ≺ 0, then take X = −tM. Then, X ·M = −t‖M‖2

and make t goes towards +∞
• If M is undefinite, then there exists v ∈ Rn such that v ·Mv < 0.

Then take X = tvv t , thus:

M · X = M · (tvv t) = t(v ·Mv) < 0,

and make t goes towards +∞.

So the only choice left is M = 0, in which case the inf is trivial.
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Dual SDP

Lagrangian (Λ ∈ Sn+)

L(X ,Λ, µ) = C · X + Λ · (−X ) +

p∑
j=1

µj(Aj · X − bj)

g(Λ, µ) = inf
X∈Sn

L(X ,Λ, µ) = −b · µ+ inf
X∈Sn

X ·

C − Λ +

p∑
j=1

µjAj



max − b · µ

s.t. C − Λ +

p∑
j=1

µjAj = 0, (d)

Λ � 0

max − b · µ

s.t. C +

p∑
j=1

µjAj � 0, (d)

Linear Matrix Inequality
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KKT conditions

• SDP is a convex problem

• Strong duality holds under Slater’s condition

• ∇XC · X = C

X ∗ satisfy the KKT conditions for the primal SDP if and only if there
exists Λ ∈ Sn, µ ∈ Rp such that:

1 Primal feasibility: Aj · X ∗ = bj , 1 ≤ j ≤ p

2 Primal feasibility: X ∗ � 0

3 Dual feasibility: Λ � 0

4 Complementarity: Λ · X ∗ = 0

5 Stationarity: ∇XL(X ∗,Λ, µ) = C − Λ +
∑p

j=1 µjAj = 0
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Interior point method

Logarithmic barrier for the positive orthant of Rn

For x > 0: φ(x) = −
∑n

i=1 log(xi )

Logarithmic barrier for the positive orthant of Sn

For X � 0: φ(X ) = − log(det X )

Central path

{X ∗(t) | t > 0}, where x∗(t) is the optimum of the following parametric
convex problem:

min C · X +
1

t
φ(X )

s.t. Aj · X − bj = 0, 1 ≤ j ≤ p (pt)
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Generalized convex problems

min f0(x)

s.t. fi (x) �Ki
0, i = 1, . . . ,m

Aj · x − bj = 0, j = 1, . . . , p

• x in a vector space V equipped with an inner product

• f0 : V → R convex and real valued

• fi : V → V , i = 1, . . . ,m, convex

• fi (x) �Ki
0 means that −fi (x) ∈ Ki for some proper cone Ki of V

• f0, f1, . . . , fm twice continuously differentiable (possibly in a weak
sense)

• Aj ∈ V , bj ∈ R
• Under Slater’s condition strong duality holds
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Generalized logarithmic barrier for proper cones

φ : V → R is a generalized logarithm for the proper cone K ⊆ V if:

• φ is defined over the interior of K

• ∇2φ(x) ≺Sn+ 0 for 0 ≺K x

• φ(sx) = φ(x) + rlog(s) for all 0 ≺K x and s > 0

• r is the degree of φ

Examples:

• K = R+, φ(x) = log(x) (classical logarithm)

• K = Rn
+, φ(x) =

∑n
i=1 log(xi ) (r = n)

• K = Sn
+: φ(x) = log(det x) (r = n)

Observe that −φ is convex (φ is concave)
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Implementations

Solvers

• Matlab packages: SeDuMi, SDPT3

• Open source: CSDP

Environment

• Matlab software: CVX, YALMIP, SoSTools

• Open source: coin-or.org
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Sum-of-squares polynomials

Let h ∈ R[x1, . . . , xn] be a polynomial over the reals.
h is non-negative if and only if ∀x ∈ Rn. h(x) ≥ 0

Sum-of-squares (SoS)

A polynomial h is a sum of squares if and only if there exists polynomials
gi , 1 ≤ i ≤ m, such that:

h =
m∑
i=1

g 2
i

A SoS polynomial is necessarily non-negative. The converse does not hold
in general (Motzkin polynomial):

h(x1, x2) = x4
1 x2

2 + x2
1 x4

2 − 3x2
1 x2

2 + 1

h is non-negative and is not a SoS.
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Polynomials as scalar products

Take a polynomial h ∈ R[x1, . . . , xn] of degree ≤ 2d .

• We can write h as a scalar product H · X
• H is a symmetric matrix (not unique)

• X is symmetric and semidefinite positive (not unique)

X can be seen as a Gramian matrix formed as the (matrix) product of the
vector χ and its transpose, where χ denote a vector of monomials of n
variables of total degree less than d .

Example

x4
1 − x2

1 x2
2 + x4

2 =

1 0 0
0 −1 0
0 0 1


︸ ︷︷ ︸

H

·


 x2

1

x1x2

x2
2


︸ ︷︷ ︸

χ

(
x2

1 x1x2 x2
2

)
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SoS is positivedefiniteness

Proposition

A polynomial h is SoS if and only if H � 0.

Proof. If H � 0 then there exists a matrix U such that H = UtU. Thus

h = H · X = (UtU) · (χχt) = (U χ) · (U χ) = ‖U χ‖2
.

If h is SoS, then there exist a list of polynomials gi such that h =
∑

i g 2
i . The

monomials vector χ is then formed by all the (distinct) monomials appearing in
all the gi . The rows of the matrix U are formed by the coefficients of the
polynomials gi .
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SoS problems are LMI

Example (cont’d)

x4
1 − x2

1 x2
2 + x4

2 =

 1 0 µ1

0 −2µ1 − 1 0
µ1 0 1


︸ ︷︷ ︸

H

·

 x4
1 x3

1 x2 x2
1 x2

2

x3
1 x2 x2

1 x2
2 x1x3

2

x2
1 x2

2 x1x3
2 x4

2


︸ ︷︷ ︸

X

Thus, h is SoS if and only if

∃µ1.

1 0 0
0 −1 0
0 0 1

+ µ1

0 0 1
0 −2 0
1 0 0

 � 0

which is an LMI problem: dual feasibility of the a dual SDP problem.
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SoS reformulation of (dual) SDP

h is SoS is equivalent to solving the following dual SDP problem:

max 0

s.t.

1 0 0
0 −1 0
0 0 1

+ µ1

0 0 1
0 −2 0
1 0 0

 � 0 (d)
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Dimensions of the LMI problem

For a fixed degree d , the size of χ is(
n + d

d

)

The size of the unknown vector of the LMI reformulation is

1

2

(
n + d

d

)((
n + d

d

)
+ 1

)
−
(

n + 2d

2d

)
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Remark

The choice of the monomials list is important:

x4
1 − x2

1 x2
2 + x4

2 =

 1 0 µ1

0 −2µ1 − 1 0
µ1 0 1


︸ ︷︷ ︸

H

·


 x2

1

x1x2

x2
2


︸ ︷︷ ︸

χ

(
x2

1 x1x2 x2
2

)


=

(
1 −1

2
−1

2 1

)
︸ ︷︷ ︸

H′

·


(

x2
1

x2
2

)
︸ ︷︷ ︸
χ′

(
x2

1 x2
2

)
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SDP relaxation of polynomial problems

min p(x)

s.t. hj(x) = 0,

1 ≤ j ≤ p

min C · X
s.t. Aj · X = bj , (p)

1 ≤ j ≤ p

X ∈ Sn+

• non-convex

• size of x : n

• convex

• size of X :
(n+d

d

)
×
(n+d

d

)
• p? ≤ p(x)

Lasserre hierarchy

Increasing d gives tighter and tighter approximations for the optimal value
of the original non-convex problem.
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SDP relaxation of discrete problems

Max-cut problem

Let G = (V ,E ) be a graph. The max-cut problem is the following
discrete optimization problem

max
∑

(i ,j)∈E

1− vivj
2

s.t. vi = {−1, 1} (vi ∈ V )

SDP relaxation (Goemans and Williamson 95)

vi are now considered vectors, and vivj becomes vi · vj . Let X = vv t .

−min C · X
s.t. diag(X ) = 1, (p)

X � 0
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