Constraint Programming and Abstract Intepretation

Séminaire Master Science Informatique
Rennes
4 novembre 2019

Charlotte Truchet

LS2N, UMR 6004, Université de Nantes

Based on joint works with

Pierre Talbot Mathieu Vavrille
Post-doc U. Nantes
Master ENS Lyon

Outline

Introduction to CP

Complete solving
Consistency
Backtrack search

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

CP on an example: Urban planning

CP on an example: Urban planning

CP on an example: Urban planning

For each urban form, we know:

- the surface they need, as a number of blocks,
- a series of preferences,
industries like rivers and roads, schools have to be near housing areas, etc
- some hard constraints.
a housing block has to be at a walking distance from a park, some urban forms must have a minimum size, etc

CP on an example: Urban planning

Sustain project

Sustain Projet, simulation on Marne-la-Vallée, a city of 8728 hectares, 230000 inhabitants, ~ 10000 cells. PhD of Bruno Belin, 2011-2014

Constraint Programming

In practice:

- combinatorial problem:
- we need to make choices,
- choices may have consequences long after they have been made,
- it must be possible to revise the choices (mark them).
- declarative problem:
- checking is easy, based on rules or user knowledge,
- efficiently building is difficult.

CP

Constraint Programming (CP) is both:
AI an efficient tool for declarative programming,
OR a series of algorithms for combinatorial (sub)structures.

Many applications on a wide range of problems:

- logistics/planning: vehicle routing, nurse roastering, matching...
- sustainable development: energy optimization, lifetime...
- arts, music, computer graphics: automatic harmonization, CAD...
- verification/software engineering: test generation, floating point abstractions...
- medicine, football games, cryptography, ...

Definitions

A variable is an unknown of the problem. It has a given domain, set of values the variable can take.

Definitions

A variable is an unknown of the problem. It has a given domain, set of values the variable can take.

A constraint is a logical relation on variables.

Definitions

A variable is an unknown of the problem. It has a given domain, set of values the variable can take.

A constraint is a logical relation on variables.

A consistent domain for a given constraint is a domain which does not contain infeasible values.

Sustain project

In collaboration with urban planners from EPAMarne

- model of the problem based on urban planners' expertise,
- solver based on a parallelized local search algorithm,
- interactive mode to re-compute partially modified solutions.

```
PhD of Bruno Belin
collaboration with Marc Christie, Frédéric Benhamou
```


Sustain project

Other examples of real-life applications

Placement of VMs on real machines (BtrPlace, Entropy project), solver Choco
namespace sandbox;
VM[1..16]: myVMs;
>>runningCapacity(eN[5..8], 5);

Other examples of real-life applications

Planning of medical examinations (radio, etc), Medicalis, solver Choco

Other examples of real-life applications

Computation of geometrical measures in CAO, DaoDesign (free), solver Choco

Other examples of real-life applications

Scheduling for the Philae robot (for instance, data transfer) with ressource constraints (memory, energy).

Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is given by:

- variables $V_{1} \ldots V_{n}$ (n fixed),
- domains $D_{1} \ldots D_{n}$, where D_{i} is the set of values that variable V_{i} can take, often finite subsets of \mathbb{N}, or subsets of \mathbb{R},
- constraints $C_{1} \ldots C_{p}$, logical relations on the variables.

A solution of the problem is an instanciation of values of the domains, to the variables, such that the constraints are satisfied.

Constraint Satisfaction Problem

For continuous variables, if solutions are not computer-representable, a solution can be given

- by an over-approximation of the solution set (complete solver),
- by an inner-approximation (correct solver).

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
$V_{1}+7=V_{3}$,
$V_{1} * V_{3}<10$
$\sum_{i} V_{i}<M$

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:
- on graphs : tree, forest, circuit...

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:
- on graphs: tree, forest, circuit...
- on words: regular, cost-regular,...

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:
- on graphs: tree, forest, circuit...
- on words: regular, cost-regular, ...
- for practical reasons : element, table...

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:
- on graphs: tree, forest, circuit...
- on words: regular, cost-regular, ...
- for practical reasons : element, table...
- specific to common problems : cumulative, geost,

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:
- on graphs : tree, forest, circuit...
- on words: regular, cost-regular, ...
- for practical reasons : element, table...
- specific to common problems : cumulative, geost,

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:
- on graphs: tree, forest, circuit...
- on words: regular, cost-regular, ...
- for practical reasons : element, table...
- specific to common problems : cumulative, geost,
- on cardinality : alldifferent, nvalue, atleast, gcc...

Constraints

Constraint languages include in general:

- arithmetic expressions and "reasonable" functions,
- comparison operators: $<, \leq,>, \geq,=, \neq$,
- global constraints:
- on graphs: tree, forest, circuit...
- on words: regular, cost-regular, ...
- for practical reasons : element, table...
- specific to common problems : cumulative, geost,
- on cardinality : alldifferent, nvalue, atleast, gcc...

Nearly all global constraints are indexed in the Global Constraint Catalog, with a common format and all the bibliography.
http://sofdem.github.io/gccat/

Outline

Introduction to CP

Complete solving
Consistency
Backtrack search

Abstract solving

Consistency on finite domains

A constraint $C\left(V_{1} \ldots V_{n}\right)$ is generalized arc-consistent (GAC) for domains $D_{1} \ldots D_{n}$ iff for every variable V_{i}, for every value $v^{i} \in D_{i}$, there exist values
$v^{1} \in D_{1}, \ldots, v^{i-1} \in D_{i-1}, v^{i+1} \in D_{i+1}, \ldots, v^{n} \in D_{n}$ such that $C\left(v^{1}, \ldots v^{n}\right)$.

Consistency on finite domains

A constraint $C\left(V_{1} \ldots V_{n}\right)$ is generalized arc-consistent (GAC) for domains $D_{1} \ldots D_{n}$ iff for every variable V_{i}, for every value $v^{i} \in D_{i}$, there exist values
$v^{1} \in D_{1}, \ldots, v^{i-1} \in D_{i-1}, v^{i+1} \in D_{i+1}, \ldots, v^{n} \in D_{n}$ such that $C\left(v^{1}, \ldots v^{n}\right)$.

A constraint $C\left(V_{1} \ldots V_{n}\right)$ is bound-consistent (BC) for domains $D_{1} \ldots D_{n}$ iff the bounds of the domains are consistent (as defined above).

Consistency on continuous domains

A constraint C on variables $V_{1} \ldots V_{n}$, with domains $D_{1} \ldots D_{n}$ is Hull consistent (HC) iff $D_{1} \times \cdots \times D_{n}$ is the smallest real box with floating point bounds, including solutions C, in
$D_{1} \times \cdots \times D_{n}$.

Remark: there are plenty of other consistencies (discrete: path-consistency, singleton arc-consistency, strong consistencies... / continuous: Box consistency, MOHCC...)

Examples

- $X=Y+3 * Z$
if $X=10, Y=4$ then $Z=-2$,

Examples

- $X=Y+3 * Z$
if $X=10, Y=4$ then $Z=-2$,
- $X=Y+3 * Z$
if $D_{Z}=\{1 . .5\}$ and $D_{X}=\{0 . .10\}$ then D_{Y} can be intersected with $\{-5,7\}$,

Examples

- $X=Y+3 * Z$
if $X=10, Y=4$ then $Z=-2$,
- $X=Y+3 * Z$
if $D_{Z}=\{1 . .5\}$ and $D_{X}=\{0 . .10\}$ then D_{Y} can be intersected with $\{-5,7\}$,
- alldifferent $\left(X_{1}, X_{2}, X_{3}\right)$
if we know that D_{1} and D_{2} are $\{1,2\}$, the values 1 and 2 can be removed from D_{3}.

Examples

- $X=Y+3 * Z$
if $X=10, Y=4$ then $Z=-2$,
- $X=Y+3 * Z$
if $D_{Z}=\{1 . .5\}$ and $D_{X}=\{0 . .10\}$ then D_{Y} can be intersected with $\{-5,7\}$,
- alldifferent $\left(X_{1}, X_{2}, X_{3}\right)$
if we know that D_{1} and D_{2} are $\{1,2\}$, the values 1 and 2 can be removed from D_{3}.
- cycle constraint in a graph :

Propagation

Propagating a constraint C on domains $D_{1} \ldots D_{n}$ is removing from $D_{1} \ldots D_{n}$ all the inconsistent values for C.

For a conjunction of constraints, for each constraint the propagators are applied until a fixpoint is reached [Benhamou, 1996, Apt, 1999].

Propagation

All in all, a propagation loop mixes:

- generic propagators for atomic constraints,
- specific propagators for global constraints,
- generic methods (often event-based) to wake the propagators and efficiently combine them.

Designing an efficient propagation loop (fixpoint acceleration) is still a challenge [Schulte and Tack, 2001].

Solving?

Consistency is not enough, in general, for computing a solution (all solutions).

Complete solving methods
Two phases are iterated

- propagation of the contraints (deductions),
- splits / instantiations : assertions on the domains, which may be invalidated later (backtrack).

Continuous Solving Method

```
Parameter: float r
list of boxes sols }\leftarrow
queue of boxes toExplore }\leftarrow
box e
e}\leftarrow\textrm{D
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e \leftarrow pop(toExplore)
    e \leftarrow Hull-Consistency(e)
    if e }\not=\emptyset\mathrm{ then
        if maxDim(e)\leqr or isSol(e)
        then
            sols}\leftarrow sols \cupe 
        else
            split e in two boxes e1 and
            e2
```



```
            push e1 and e2 in toExplore
```


Continuous Solving Method

Parameter: float r

```
list of boxes sols }\leftarrow
queue of boxes toExplore \leftarrow\emptyset
box e
e}\leftarrow\textrm{D
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e \leftarrow pop(toExplore)
    e}\leftarrow\mathrm{ Hull-Consistency(e)
    if e }\not=\emptyset\mathrm{ then
        if maxDim(e)\leq r or isSol(e)
        then
            sols}\leftarrow\mathrm{ sols U e
        else
            split e in two boxes e1 and
            e2
            push e1 and e2 in toExplore
```


Continuous Solving Method

Parameter: float r

```
list of boxes sols }\leftarrow
queue of boxes toExplore }\leftarrow
box e
e}\leftarrow\textrm{D
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e \leftarrow pop(toExplore)
    e}\leftarrow\mathrm{ Hull-Consistency(e)
    if e }\not=\emptyset\mathrm{ then
        if maxDim(e)\leqr or isSol(e)
        then
            sols}\leftarrow sols \cup 
        else
            split e in two boxes e1 and
            e2
            push e1 and e2 in toExplore
```


Continuous Solving Method

```
Parameter: float r
list of boxes sols }\leftarrow
queue of boxes toExplore }\leftarrow
box e
e}\leftarrow\textrm{D
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e \leftarrow pop(toExplore)
    e \leftarrow Hull-Consistency(e)
    if e }=\emptyset\mathrm{ then
        if maxDim(e)\leq r or isSol(e)
        then
            sols}\leftarrow sols \cup
        else
            split e in two boxes e1 and e2
                push e1 and e2 in toExplore
```


Continuous Solving Method

```
Parameter: float r
```

```
list of boxes sols }\leftarrow
queue of boxes toExplore \leftarrow\emptyset
box e
e}\leftarrow\textrm{D
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e \leftarrow pop(toExplore)
    e \leftarrow Hull-Consistency(e)
    if e }\not=\emptyset\mathrm{ then
        if maxDim(e)\leq r or isSol(e)
        then
            sols \leftarrow sols \cup e
        else
            split e in two boxes e1 and
            e2
            push e1 and e2 in toExplore
```


Continuous Solving Method

```
Parameter: float r
```

```
list of boxes sols }\leftarrow
queue of boxes toExplore }\leftarrow
box e
e}\leftarrow\textrm{D
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e \leftarrow pop(toExplore)
    e}\leftarrow\mathrm{ Hull-Consistency(e)
    if e \not=\emptyset then
        if maxDim(e)\leqr or isSol(e)
        then
            sols \leftarrow sols \cup e
        else
            split e in two boxes e1 and
            e2
        push e1 and e2 in toExplore
```


Heuristics

- dom: smallest domain first,
- deg, wdeg: most constrained variable first (possibly with weights),
- dom/wdeg: the previous ones combined,
- activity: dynamically adapts to the efficiency of the constraints,
- counting-based search: uses estimations (or ub) of the number of solutions for the global constraints (cardinality),
- on continuous domains, largest dimension first,
- ad hoc heuristics.

There is no such thing as a Free Lunch.

Some active solvers

- Choco: java library, free http://www.emn.fr/z-info/choco-solver/
- gecode: C++ library, free -http://www.gecode.org/
- ORTools: C++, interface in Python, free, https://code.google.com/p/or-tools/
- Oscar: Scala, free, https:
//bitbucket.org/oscarlib/oscar/wiki/Home
- Prolog family: ECLiPSe, Sicstus
- AbSolute, OCaml, free,
- plenty of others!

Disambiguation

CP
Vars int or real or symb Const
Solv
Propag ad hoc
Learning nogoods
Implem support (AC6+)

SAT/SMT

bool+MT
clauses+MT
DPLL
unit
clause learning
watched literals

CP is good at: global reasoning on combinatorial problems, modeling tools, dirty problems.
CP is bad at: mixing variables of different types, learning.

Outline

Introduction to CP

Complete solving

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

Consistency

Hull-consistency

Bound-consistency

Generalized
arc-consistency

Two key remarks

- consistency is not about where the solutions are, it is about where they are not,
- why square?

Abstract Interpretation

- Abstract Interpretation (AbsInt) is a theory of approximation of program semantics [Cousot and Cousot, 1976]
- Applied to static analysis and verification of software
- Goal: automatically prove that a program does not have execution errors
- Key idea: abstract the valuations of the programs variables

Abstract Domain

```
int x, y
y}\leftarrow
x}\leftarrow\operatorname{random(1, 5)
while }y<3\mathrm{ and }x\leq8 d
    x}\leftarrow\textrm{x}+\textrm{y
    y}\leftarrow2*
x}\leftarrowx-
y}\leftarrow\textrm{y}+
```

 \(y\)

Abstract Domain

```
int x, y
y}\leftarrow
x}\leftarrow\mathrm{ random(1, 5)
while }y<3\mathrm{ and }x\leq8\mathrm{ do
    x}\leftarrowx+
    y\leftarrow2*y
x}\leftarrow\textrm{x}-
y}\leftarrowy+
```


Abstract Domain

```
int x, y
y \leftarrow 1
x }\leftarrow\mathrm{ random(1, 5)
while }y<3\mathrm{ and }x\leq8 d
    x}\leftarrowx+
    y}\leftarrow2*
x}\leftarrow\textrm{x}-
y}\leftarrowy+
```


Boxes

Abstract Domain

Better boxes

Abstract Domain

Abstract Domain

Convex polyhedra

AI ? CP ?

Al in a nutshell
We may not know where a program is going. But it is fine, as long as we know where the program is not going.

AI ? CP ?

Al in a nutshell
We may not know where a program is going. But it is fine, as long as we know where the program is not going.

CP in a nutshell
We make huge efforts to compute where solutions cannot be.

Links

$C P \cap A I$
Approximations of some spaces which are undecidable, or difficult to compute:

- solution space in CP,
- traces in AI.
$A \backslash C P$
- many abstract domains,
- reduced products (combining abstract domains).
$C P \backslash A I$
- heuristics,
- precision.

Abstract Solving Method

Central question
Given a CSP, is it possible to write a program such that a static analysis of this program gives the solutions of the CSP?

We define the resolution as a concrete semantics.

What already exist in Al

Intervals

Abstract domains come with:

- transfer functions ρ^{\sharp} (assignment, test, ...)
- meet \cap^{\sharp} and join \cup^{\sharp}
- widening ∇^{\sharp} and narrowing Δ^{\sharp}

What already exist in Al

Intervals

Abstract domains come with:

- transfer functions ρ^{\sharp} (assignment, test, ...)
- meet \cap^{\sharp} and join \cup^{\sharp}
- widening ∇^{\sharp} and narrowing Δ^{\sharp}

We need:

- a consistency/propagation ρ
- a splitting operator \oplus
- a size function τ

Abstract Solving Method

Propagation

- Constraint propagators are test transfer functions Hull consistency algorithm HC4 is exactly the same algorithm as Bottom-Up Top-Down in Abstract Interpretation [Cousot and Cousot, 1977]
- Propagation loop, fixpoint using local iterations [Granger, 1992]

Exploration

- Splitting operator in disjunctive completion: must be added
- Size function: must be added

Continuous Solving Method

```
Parameter: float r
list of boxes sols }\leftarrow
queue of boxes toExplore }\leftarrow
box e \leftarrow D
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e\leftarrow pop(toExplore)
    e\leftarrow propagate(e)
    if e\not=\emptyset then
        if maxDim(e) \leqr or isSol(e) then
        sols}\leftarrow\mathrm{ sols Ue
        else
            split e in two boxes e1 and e2
            push e1 and e2 in toExplore
```


Abstract Solving Method

```
Parameter: float r
Iist of boxes disjunction sols \leftarrow\emptyset
queue of boxes disjunction toExplore }\leftarrow
box abstract element e \leftarrow 刀 T#
push e in toExplore
while toExplore }\not=\emptyset\mathrm{ do
    e}\leftarrow\mathrm{ pop(toExplore)
    e
    if e}=\emptyset\emptyset\mathrm{ then
        if maxDim(e) }\tau(e)\leqr\mathrm{ or isSol(e) then
        sols}\leftarrow\mathrm{ sols Ue
        else
            split e in two boxes el and ez
            push el and ez }\oplus(e) in toExplor
```

Under some conditions on the operators, this abstract solving method terminates, is correct and/or complete.

AbSolute

AbSolute is a solver:

- in OCaml
- based on the Apron library for numeric abstract domains [Jeannet and Miné, 2009],
- on abstract domains: boxes, octagons, polyhedra, BDDs (currently developed) some reduced products, and many others soon,
- with plenty of fun features: visualization, tikz generation...

$$
\begin{gathered}
\text { https://github.com/mpelleau/AbSolute } \\
\text { Now in opam! }
\end{gathered}
$$

Solver architecture

Everything is made on abstract domains.
Abstract domain
type domain
val init : prob \rightarrow domain
val propagate : domain $->$ constraints $->$
domain
val split : domain \rightarrow domain list
val size : domain $->$ bool

Outline

Introduction to CP

Complete solving

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

Octagons

Definition (Octagon [Miné, 2006])
Set of points satisfying a conjunction of constraints of the form $\pm v_{i} \pm v_{j} \leq c$, called octagonal constraints

- In dimension n, an octagon has at most $2 n^{2}$ faces
- An octagon can be unbounded

Octagons

Compact representation: smallest Difference Bound Matrix (DBM)

- provides a normal form (smallest DBM),
- efficient propagation with Floyd-Warshall shortest path algorithm [Miné, 2006].

Octagons

Compact representation: smallest Difference Bound Matrix (DBM)

- provides a normal form (smallest DBM),
- efficient propagation with Floyd-Warshall shortest path algorithm [Miné, 2006].

Octagons for CP

Octagons for CP

Representation for CP

Representation in $\mathcal{O}\left(n^{2}\right)$ for a CSP with n variables and p constraints

- n^{2} variables
- $p(n(n-1)+2) / 2$ constraints

Back to the boxes: the constraints can be propagated in all the bases.

Octagonal Hull Consistency

Interleave the FW algorithm, and Hull-Consistency for each box:
each time a new bound is found by FW, it is replaced by the minimum of the bounds.

Octagonal Split

A splitting operator, splits a variable domain

Octagonal Heuristic

Octagonal Heuristic

Take the "best" basis, the box with the minimum of the maximum width
Split the largest domain in this basis, the domain with the maximum width

Octagonal Solving

- We have:
- an octagonal consistency
- a splitting operator
- a choice heuristic
- a precision.
- We obtain an Octagonal Solver

Output

Same problem with the same time limit.

Experiments

Comparison of an ad-hoc implementation of the same solving algorithm, with the octagon abstract domain or the intervals.

		First solution		All the solutions		
name	nbvar	ctrs	\mathbb{I}^{n}	Oct	\mathbb{I}^{n}	Oct
h75	5	\leq	41.40	0.03	-	-
hs64	3	\leq	0.01	0.05	-	-
h84	5	\leq	5.47	2.54	-	7238.74
KinematicPair	2	\leq	0.00	0.00	53.09	16.56
pramanik	3	$=$	28.84	0.16	193.14	543.46
trigo1	10	$=$	18.93	1.38	20.27	28.84
brent-10	10	$=$	6.96	0.54	17.72	105.02
h74	5	$=$	305.98	13.70	1304.23	566.31
fredtest	6	$=$	3146.44	19.33	-	-

Solver: Ibex [Chabert and Jaulin, 2009].
Problems from the COCONUT benchmark.
CPU time in seconds, TO 3 hours.

Outline

Introduction to CP

Complete solving

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains

Reduced Products

A Reduced Product combines two (or more) abstract domains, with reduction operators to transfer information from one to the other [Cousot and Cousot, 1979].

(a) Polyhedra

(b) Boxes

(c) Reduced Product

Promising Reduced Products

- Box-Polyedra: mixes CP and Operation Research techniques (linear programming \& integer linear programming), implemented by Ghiles Ziat,
- Integer-Real Boxes: solves problem with both continuous and discrete variables.
current work: a clever reduced product heuristic, Ghiles Ziat
- Boxes-Integer octagons, with reified constraints: other ways for the domains to communicate current work: new ways of learning constraints, Pierre Talbot

Polyedra abstract domain \mathcal{P}^{\sharp}

We use the already existing Polyedra Abstract Domain in double representation (constraints and generators).

$$
\begin{gathered}
\tau_{p}\left(X^{\sharp}\right)=\max _{v i f i \in X}\left\|X_{i}-g_{j}\right\| \\
\oplus_{p}\left(X^{\sharp}\right)=\left\{X^{\sharp} \cup\left\{\sum_{i} \beta_{i} v_{i} \leq h\right\}, X^{\sharp} \cup\left\{\sum_{i} \beta_{i} v_{i} \geq h\right\}\right\}
\end{gathered}
$$

Box Polyedra Reduced Product

$$
\begin{aligned}
& y \leq 2 x+10 \\
& 2 y \geq x-8 \\
& x^{2}+y^{2} \geq 3 \\
& x, y \in[-5,5]
\end{aligned}
$$

(e) Consistent polyhedron

(f) Solving the non-linear part

(g) Intersection of the domains

Box Polyedra Reduced Product

problem	\#var	\#ctrs	time, AbS	time, lbex	\#sols AbS	\#sols, Ibex
booth	2	2	3.026 s	26.36 s	19183	1143554
exnewton	2	3	0.158 s	26.452 s	14415	1021152
supersim	2	3	0.7 s	0.008 s	1	1
aljazzaf	3	2	0.008 s	0.02 s	42	43
bronstein	3	3	0.01 s	0.004 s	8	4
eqlin	3	3	0.07 s	0.008 s	1	1
cubic	2	2	0.007 s	0.009	9	3
hs23	2	6	2.667 s	2.608 s	27268	74678
powell	4	4	0.007 s	0.02	4	1
combustion	10	10	0.007 s	0.012 s	1	1

Other works

current Solution counting for global constraints (PhD Giovanni Lo Bianco)
future Solution counting in Abstract Domains, solvers which enumerate solutions in a random order
current Application to flow-chemistry (post-doc Daniel Cortes Borda)
future Application to mixed problems

Conclusion

What we (CP) gain:

- new, relational abstract domains: octagons, polyedra, BDDs...
- reduced products to combine domains in a sound way: Boxes+Polyedra, Real+Int boxes,
- new heuristics inspired from AI: elimination.

What AI gains:

- new operators on abstract domains to use on other verification problems: split for computing inductive invariants,
- new tools on the abstract domains which can be defined as constraints: size, enumeration of feasible points...

Further Research

Develop AbSolute

- improve the integer domain, add solution counting,
- generalize the reduced products mechanism (constraint allocation),

Is CP a decision procedure? Investigate the links with SMT:

- use SMT learning with abstract domains (comparable to ACDCL),
- compare the landscape analysis/heuristics to build efficient combined models,
- define CP as an MT, to retrieve the logic part of CP: back to constraint logic programming!

Apt, K. R. (1999).
The essence of constraint propagation.
Theoretical Computer Science, 221.
Renhamou, F. (1996).
Heterogeneous constraint solvings.
In Proceedings of the 5th International Conference on
Algebraic and Logic Programming, pages 62-76.
E- Chabert, G. and Jaulin, L. (2009).
Contractor programming.
Artificial Intelligence, 173:1079-1100.
(R) Cousot, P. and Cousot, R. (1976).

Static determination of dynamic properties of programs.
In Proceedings of the 2nd International Symposium on
Programming, pages 106-130.
R Cousot, P. and Cousot, R. (1977).
Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixnoints

