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CP on an example: Urban planning

For each urban form, we know:
I the surface they need, as a number of blocks,
I a series of preferences,

industries like rivers and roads, schools have to be near housing areas, etc

I some hard constraints.
a housing block has to be at a walking distance from a park, some urban forms

must have a minimum size, etc
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Sustain project

Sustain Projet, simulation on Marne-la-Vallée,
a city of 8728 hectares, 230 000 inhabitants, ∼ 10 000 cells.

PhD of Bruno Belin, 2011-2014
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Constraint Programming

In practice:
I combinatorial problem:

I we need to make choices,
I choices may have consequences long after

they have been made,
I it must be possible to revise the choices (mark them).

I declarative problem:
I checking is easy, based on rules or user knowledge,
I efficiently building is difficult.
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CP

Constraint Programming (CP) is both:
AI an efficient tool for declarative programming,

OR a series of algorithms for combinatorial (sub)structures.

Many applications on a wide range of problems:

I logistics/planning: vehicle routing, nurse roastering, matching...

I sustainable development: energy optimization, lifetime...

I arts, music, computer graphics: automatic harmonization, CAD...

I verification/software engineering: test generation, floating point
abstractions...

I medicine, football games, cryptography, ...
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Definitions

A variable is an unknown of the problem. It has a given domain,
set of values the variable can take.
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Definitions

A variable is an unknown of the problem. It has a given domain,
set of values the variable can take.

A constraint is a logical relation on variables.

A consistent domain for a given constraint is a domain which
does not contain infeasible values.
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Sustain project

In collaboration with urban planners from EPAMarne
I model of the problem based on urban planners’ expertise,
I solver based on a parallelized local search algorithm,
I interactive mode to re-compute partially modified solutions.

PhD of Bruno Belin
collaboration with Marc Christie, Frédéric Benhamou



10/54

Sustain project
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Other examples of real-life applications

Placement of VMs on real machines (BtrPlace, Entropy
project), solver Choco
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Other examples of real-life applications

Planning of medical examinations (radio, etc), Medicalis, solver
Choco
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Other examples of real-life applications

Computation of geometrical measures in CAO, DaoDesign
(free), solver Choco
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Other examples of real-life applications

Scheduling for the Philae robot (for instance, data transfer) with
ressource constraints (memory, energy).
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Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is given by:
I variables V1...Vn (n fixed),
I domains D1...Dn, where Di is the set of values that variable

Vi can take,
often finite subsets of N, or subsets of R,

I constraints C1...Cp, logical relations on the variables.

A solution of the problem is an instanciation of values of the
domains, to the variables, such that the constraints are
satisfied.
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Constraint Satisfaction Problem

For continuous variables, if solutions are not
computer-representable, a solution can be given

I by an over-approximation of the solution set (complete
solver),

I by an inner-approximation (correct solver).
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Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,

V1 + 7 = V3,
V1 ∗ V3 < 10∑

i Vi < M

I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...
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Constraints
Constraint languages include in general:

I arithmetic expressions and "reasonable" functions,
I comparison operators: <,≤, >,≥,=, 6=,
I global constraints:

I on graphs : tree, forest, circuit...
I on words: regular, cost-regular, ...
I for practical reasons : element, table...
I specific to common problems : cumulative, geost,
I on cardinality : alldifferent, nvalue, atleast, gcc...

Nearly all global constraints are indexed in the Global Constraint
Catalog, with a common format and all the bibliography.
http://sofdem.github.io/gccat/

http://sofdem.github.io/gccat/
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Consistency on finite domains

A constraint C(V1...Vn) is generalized arc-consistent (GAC) for
domains D1...Dn iff for every variable Vi , for every value v i ∈ Di ,
there exist values
v1 ∈ D1, ..., v i−1 ∈ Di−1, v i+1 ∈ Di+1, ..., vn ∈ Dn such that
C(v1, ...vn).

A constraint C(V1...Vn) is bound-consistent (BC) for domains
D1...Dn iff the bounds of the domains are consistent (as defined
above).
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Consistency on finite domains

A constraint C(V1...Vn) is generalized arc-consistent (GAC) for
domains D1...Dn iff for every variable Vi , for every value v i ∈ Di ,
there exist values
v1 ∈ D1, ..., v i−1 ∈ Di−1, v i+1 ∈ Di+1, ..., vn ∈ Dn such that
C(v1, ...vn).
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Consistency on continuous domains

A constraint C on variables V1 . . .Vn, with domains D1 . . .Dn is
Hull consistent (HC) iff D1 × · · · × Dn is the smallest real box
with floating point bounds, including solutions C, in
D1 × · · · × Dn.

Remark: there are plenty of other consistencies (discrete:
path-consistency, singleton arc-consistency, strong consistencies... /
continuous: Box consistency, MOHCC...)
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Examples

I X = Y + 3 ∗ Z
if X = 10,Y = 4 then Z = −2,

I X = Y + 3 ∗ Z
if DZ = {1..5} and DX = {0..10} then DY can be intersected with
{−5,7},

I alldifferent(X1,X2,X3)
if we know that D1 and D2 are {1,2}, the values 1 and 2 can be
removed from D3.

I cycle constraint in a graph :
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Propagation

Propagating a constraint C on domains D1...Dn is removing
from D1...Dn all the inconsistent values for C.

For a conjunction of constraints, for each constraint the
propagators are applied until a fixpoint is reached
[Benhamou, 1996, Apt, 1999].
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Propagation

All in all, a propagation loop mixes:
I generic propagators for atomic constraints,
I specific propagators for global constraints,
I generic methods (often event-based) to wake the

propagators and efficiently combine them.

Designing an efficient propagation loop (fixpoint acceleration) is
still a challenge [Schulte and Tack, 2001].
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Solving ?

Consistency is not enough, in general, for computing a solution
(all solutions).

Complete solving methods
Two phases are iterated

I propagation of the contraints (deductions),
I splits / instantiations : assertions on the domains, which

may be invalidated later (backtrack).
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Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e

e ← D
push e in toExplore

while toExplore 6= ∅ do
e ← pop(toExplore)
e ← Hull-Consistency(e)
if e 6= ∅ then

if maxDim(e)≤ r or isSol(e)
then

sols ← sols ∪ e
else

split e in two boxes e1 and
e2
push e1 and e2 in toExplore

v1

v2
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Heuristics

I dom: smallest domain first,
I deg, wdeg: most constrained variable first (possibly with

weights),
I dom/wdeg: the previous ones combined,
I activity: dynamically adapts to the efficiency of the

constraints,
I counting-based search: uses estimations (or ub) of the

number of solutions for the global constraints (cardinality),
I on continuous domains, largest dimension first,
I ad hoc heuristics.

There is no such thing as a Free Lunch.
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Some active solvers

I Choco: java library, free
http://www.emn.fr/z-info/choco-solver/

I gecode: C++ library, free
-http://www.gecode.org/

I ORTools: C++, interface in Python, free,
https://code.google.com/p/or-tools/

I Oscar: Scala, free,
https:
//bitbucket.org/oscarlib/oscar/wiki/Home

I Prolog family: ECLiPSe, Sicstus
I AbSolute, OCaml, free,
I plenty of others!

http://www.emn.fr/z-info/choco-solver/
- http://www.gecode.org/
https://code.google.com/p/or-tools/
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://bitbucket.org/oscarlib/oscar/wiki/Home
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Disambiguation

CP SAT/SMT
Vars int or real or symb bool+MT
Const various clauses+MT
Solv backtrack DPLL
Propag ad hoc unit
Learning nogoods clause learning
Implem support (AC6+) watched literals

CP is good at: global reasoning on combinatorial problems,
modeling tools, dirty problems.
CP is bad at: mixing variables of different types, learning.
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Outline
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Consistency

Hull-consistency Bound-consistency Generalized
arc-consistency

Two key remarks

I consistency is not about where the solutions are, it is about
where they are not,

I why square?
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Abstract Interpretation

I Abstract Interpretation (AbsInt) is a theory of approximation
of program semantics [Cousot and Cousot, 1976]

I Applied to static analysis and verification of software

I Goal: automatically prove that a program does not have
execution errors

I Key idea: abstract the valuations of the programs variables
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Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Forbidden Zone
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int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Concrete domain D[
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Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1 x

y

Boxes
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Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Better boxes



29/54

Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x
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Abstract Domain

int x, y
y ← 1
x ← random(1, 5)
while y<3 and x≤8 do

x ← x+y
y ← 2*y

x ← x-1
y ← y+1

x

y

Convex polyhedra
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AI ? CP ?

AI in a nutshell
We may not know where a program is going. But it is fine, as
long as we know where the program is not going.

CP in a nutshell
We make huge efforts to compute where solutions cannot be.
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Links

CP ∩ AI
Approximations of some spaces which are undecidable, or
difficult to compute:

I solution space in CP,
I traces in AI.

AI\CP

I many abstract domains,
I reduced products (combining abstract domains).

CP\AI

I heuristics,
I precision.
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Abstract Solving Method

Central question
Given a CSP, is it possible to write a program such that a static
analysis of this program gives the solutions of the CSP?

We define the resolution as a concrete semantics.
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What already exist in AI

Intervals Zonotopes Octagons Polyhedron

Abstract domains come with:
I transfer functions ρ] (assignment, test, . . . )
I meet ∩] and join ∪]

I widening O] and narrowing M]

We need:
I a consistency/propagation ρ
I a splitting operator ⊕
I a size function τ
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Abstract Solving Method

Propagation

I Constraint propagators are test transfer functions
Hull consistency algorithm HC4 is exactly the same algorithm as
Bottom-Up Top-Down in Abstract Interpretation
[Cousot and Cousot, 1977]

I Propagation loop, fixpoint using local iterations
[Granger, 1992]

Exploration

I Splitting operator in disjunctive completion: must be added
I Size function: must be added
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Continuous Solving Method

Parameter: float r

list of boxes sols ← ∅
queue of boxes toExplore ← ∅
box e ← D

push e in toExplore

while toExplore 6= ∅ do
e← pop(toExplore)
e← propagate(e)
if e 6= ∅ then

if maxDim(e) ≤ r or isSol(e) then
sols ← sols ∪ e

else
split e in two boxes e1 and e2
push e1 and e2 in toExplore

Under some conditions on the operators, this abstract solving
method terminates, is correct and/or complete.
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Abstract Solving Method

Parameter: float r

list of boxes disjunction sols ← ∅
queue of boxes disjunction toExplore ← ∅
box abstract element e ← D >]

push e in toExplore

while toExplore 6= ∅ do
e← pop(toExplore)
e← propagate(e) ρ](e)
if e 6= ∅ then

if maxDim(e) τ(e) ≤ r or isSol(e) then
sols ← sols ∪ e

else
split e in two boxes e1 and e2
push e1 and e2 ⊕(e) in toExplore

Under some conditions on the operators, this abstract solving
method terminates, is correct and/or complete.
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AbSolute

AbSolute is a solver:
I in OCaml
I based on the Apron library for numeric abstract domains

[Jeannet and Miné, 2009],
I on abstract domains: boxes, octagons, polyhedra, BDDs

(currently developed) some reduced products, and many
others soon,

I with plenty of fun features: visualization, tikz generation...

https://github.com/mpelleau/AbSolute
Now in opam!

https://github.com/mpelleau/AbSolute
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Solver architecture

Everything is made on abstract domains.

Abstract domain

type domain

va l init : prob −> domain
va l propagate : domain −> constraints −>

domain
va l split : domain −> domain list
va l size : domain −> bool
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Octagons

Definition (Octagon [Miné, 2006])
Set of points satisfying a conjunction of constraints of the form
±vi ± vj ≤ c, called octagonal constraints

v1

v2

v1 ≥ 1

v1 ≤ 5v2 ≥ 1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

v1 + v2 ≥ 3
I In dimension n, an octagon

has at most 2n2 faces
I An octagon can be

unbounded
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Octagons

Compact representation: smallest Difference Bound Matrix
(DBM)

v1

v2

−v1 ≤ −1

v1 ≤ 5
−v2 ≤ −1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

−v1 − v2 ≤ −3 
0 −2 2 −3

10 0 +∞ 2.5
2.5 −3 0 −2
+∞ 2 10 0


v1 −v1 v2 −v2

v1

−v1

v2

−v2

I provides a normal form (smallest DBM),
I efficient propagation with Floyd-Warshall shortest path

algorithm [Miné, 2006].



37/54

Octagons

Compact representation: smallest Difference Bound Matrix
(DBM)

v1

v2

−v1 ≤ −1

v1 ≤ 5
−v2 ≤ −1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

−v1 − v2 ≤ −3 
0 −2 2 −3

10 0 10 2.5
2.5 −3 0 −2
10 2 10 0


v1 −v1 v2 −v2

v1

−v1

v2

−v2

I provides a normal form (smallest DBM),
I efficient propagation with Floyd-Warshall shortest path

algorithm [Miné, 2006].



38/54

Octagons for CP

x

y
x ≥ 1

x ≤ 5
y ≥ 1

y ≤ 5

y − x ≤ 2

x − y ≤ 2.5

x + y ≥ 3

x ′ = x cos
(
π
4

)
− y sin

(
π
4

)
y ′ = x sin

(
π
4

)
+ y cos

(
π
4

)

x

y x ′

y ′
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Representation for CP

Representation in O(n2) for a CSP with n variables and p
constraints

I n2 variables
I p(n(n − 1) + 2)/2 constraints

Back to the boxes: the constraints can be propagated in all the
bases.
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Octagonal Hull Consistency

Interleave the FW algorithm,
and Hull-Consistency for each
box:
each time a new bound is found
by FW, it is replaced by the
minimum of the bounds.

HC4

HC4
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Octagonal Split

A splitting operator, splits a variable domain

v1

v2

v1

v2

v1

v2
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Octagonal Heuristic

Take the "best" basis, the box with the minimum of the maximum
width
Split the largest domain in this basis, the domain with the
maximum width
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Octagonal Solving

I We have:
I an octagonal consistency
I a splitting operator
I a choice heuristic
I a precision.

I We obtain an Octagonal Solver
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Output

Same problem with the same time limit.



45/54

Experiments

Comparison of an ad-hoc implementation of the same solving
algorithm, with the octagon abstract domain or the intervals.

First solution All the solutions
name nbvar ctrs In Oct In Oct
h75 5 ≤ 41.40 0.03 - -
hs64 3 ≤ 0.01 0.05 - -
h84 5 ≤ 5.47 2.54 - 7238.74

KinematicPair 2 ≤ 0.00 0.00 53.09 16.56
pramanik 3 = 28.84 0.16 193.14 543.46

trigo1 10 = 18.93 1.38 20.27 28.84
brent-10 10 = 6.96 0.54 17.72 105.02

h74 5 = ≤ 305.98 13.70 1 304.23 566.31
fredtest 6 = ≤ 3 146.44 19.33 - -

Solver: Ibex [Chabert and Jaulin, 2009].
Problems from the COCONUT benchmark.
CPU time in seconds, TO 3 hours.



46/54

Outline

Introduction to CP

Complete solving

Abstract solving
Abstract Domains for CP
Octagons
Combining abstract domains



47/54

Reduced Products

A Reduced Product combines two (or more) abstract domains,
with reduction operators to transfer information from one to the
other [Cousot and Cousot, 1979].

(a) Polyhedra (b) Boxes (c) Reduced Product
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Promising Reduced Products

I Box-Polyedra: mixes CP and Operation Research
techniques (linear programming & integer linear
programming),
implemented by Ghiles Ziat,

I Integer-Real Boxes: solves problem with both continuous
and discrete variables.
current work: a clever reduced product heuristic, Ghiles
Ziat

I Boxes-Integer octagons, with reified constraints: other
ways for the domains to communicate
current work: new ways of learning constraints, Pierre
Talbot



49/54

Polyedra abstract domain P ]

We use the already existing Polyedra Abstract Domain in
double representation (constraints and generators).

τp(X ]) = max
vfill∈X]

||gi − gj ||

⊕p(X ]) =

{
X ] ∪

{∑
i

βivi ≤ h

}
,X ] ∪

{∑
i

βivi ≥ h

}}
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Box Polyedra Reduced Product

x , y ∈ [−5,5]

y ≤ 2x + 10
2y ≥ x − 8

x2 + y2 ≥ 3

(e) Consistent
polyhedron

(f) Solving the
non-linear part

(g) Intersection
of the domains
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Box Polyedra Reduced Product

problem #var #ctrs time, AbS time, Ibex #sols AbS #sols, Ibex
booth 2 2 3.026s 26.36s 19183 1143554

exnewton 2 3 0.158s 26.452s 14415 1021152
supersim 2 3 0.7s 0.008s 1 1
aljazzaf 3 2 0.008s 0.02s 42 43

bronstein 3 3 0.01s 0.004s 8 4
eqlin 3 3 0.07s 0.008s 1 1
cubic 2 2 0.007s 0.009 9 3
hs23 2 6 2.667s 2.608s 27268 74678

powell 4 4 0.007s 0.02 4 1
combustion 10 10 0.007s 0.012s 1 1
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Other works

current Solution counting for global constraints (PhD Giovanni Lo
Bianco)

future Solution counting in Abstract Domains, solvers which
enumerate solutions in a random order

current Application to flow-chemistry (post-doc Daniel Cortes
Borda)

future Application to mixed problems
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Conclusion

What we (CP) gain:
I new, relational abstract domains: octagons, polyedra,

BDDs...
I reduced products to combine domains in a sound way:

Boxes+Polyedra, Real+Int boxes,
I new heuristics inspired from AI: elimination.

What AI gains:
I new operators on abstract domains to use on other

verification problems: split for computing inductive
invariants,

I new tools on the abstract domains which can be defined as
constraints: size, enumeration of feasible points...
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Further Research

Develop AbSolute
I improve the integer domain, add solution counting,
I generalize the reduced products mechanism (constraint

allocation),

Is CP a decision procedure? Investigate the links with SMT:
I use SMT learning with abstract domains (comparable to

ACDCL),
I compare the landscape analysis/heuristics to build efficient

combined models,
I define CP as an MT, to retrieve the logic part of CP: back

to constraint logic programming!
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