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1 SAT/SMT Solvers

A. Quadratic Diophantine Equations
Consider the following quadratic Diophantine equation

ax2 + by = c

where (x, y) are unknown integers and a, b, and c are three positive integers.

1. Prove that 3-SAT is NP-complete. Recall that 3-SAT is a restricted version of SAT where each clause
contains exactly three literals.

2. Using 3-SAT, prove that the existence of solutions for the above quadratic equation is also NP-
complete.

Answer. (Hard)

1. Suppose a clause has more than 4 literals l1 ∨ l2 ∨ l3 ∨ l4, then one introduces a new variable, z
say, substitute l3 ∨ l4 by z and append the equivalence z ↔ l3 ∨ l4 to the problem. Here z substitutes
two literals, so the CNF form of the equivalence will introduce new clauses with only three literals.
In the general case, one may need to repeat this process till no more clauses with more than three
literals appear in the problem. The NP-completeness comes from the fact that such transformation is
polynomial. We can also transform a generic SAT problem (not in CNF) into a 3-SAT by exploiting
Tseytin transformations.

2. This problem is intentionally hard in the sense that you’ve probably never thought about proving
the NP-completeness of such problem. I wasn’t expecting a full solution but rather wanted to see your
reaction and how you will attack it given the very (very) limited time you have. Again, as researchers,
you will be confronted to this situation again and again for problems for which you don’t even know
whether a solution exists. Check the full solution here [Manders and Adleman, 1978].

B. UNSAT Certificates
Suppose that your preferred SAT solver answers UNSAT for a given problem.

1. What options do you have to actually verify the veracity of such an output ?

2. Explain how Clause learning can be used to actually extract an UNSAT certi�cate, that is a (logical)
proof of non satis�ability that can be checked by a human or a proof assistant.

3. How to extend such procedure to SMT?

Answer. (Easy)

1. Not much in fact. Unless the SAT Solver itself is formally proven correct, without a formal certi�-
cate, one cannot but trust the output of the SAT solver. This means that, without a certi�cate, there
might be a bug that lead to the UNSAT whereas the problem is in fact SAT.

2. The learned clauses are logical consequences of the original problem. If the problem is UNSAT,
then all the paths of the exploration tree must end up with a contradicting clause. Collecting all those
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clauses leads to an UNSAT ceritifcate that proves that the problem is actually UNSAT. Such certi�cate
can be checked by a human or a proof assistant. The main problem being the size of such certi�cate.

3. Certi�cates can be, and actually already are, extended to SMT solvers with simple theories. In
addition to the contradicting clauses, one needs to add speci�c “emptiness” checks for the underlying
theories. For instance, in linear programming, Farkas’ lemma is used to provide a witness for the
polyhedron emptiness.

2 Convex Optimization

A. Convexity
Is the following set is convex ?{

α ∈ Rk | pα(0) = 1, |pα(t)| ≤ 1 for a ≤ t ≤ b
}
,

where pα(t) = α0 + α1t+ · · ·+ αk−1t
k−1.

Answer. (Easy)

Suppose α and β are elements of this set. We want to prove that any convex combination of α and β
is also an element of the set. Let λ ∈ [0, 1]. Let t̄ denote the vector of the �rst k monomials of t, that
is

t̄ = (t0, t1, . . . , tk−1),

then pα(t) is simply a scalar product of α and t̄. We have

pλα+(1−λ)β(t) = (λα+ (1− λ)β) · t̄ = λ(α · t̄) + (1− λ)(β · t̄) = λpα(t) + (1− λ)pβ(t) .

We need to check two conditions

1. pλα+(1−λ)β(0) = λα0 + (1− λ)β0 = 1, for all λ ∈ [0, 1]

2. |pλα+(1−λ)β(t)| ≤ 1 for all λ ∈ [0, 1] and for all t in a ≤ t ≤ b

The �rst condition is true because α0 = β0 = 1. The second condition is also true thanks to the
triangular inequality

|pλα+(1−λ)β(t)| = |λpα(t) + (1− λ)pβ(t)| ≤ λ|pα(t)|+ (1− λ)|pβ(t)| ≤ 1 .

Thus, the set is convex.

An easier way to say all of this is that pα(t) is linear in α (despite the unusual notation). Since all the
conditions are also linear (in α), the convexity follows.

B. Linear Programming
Let Ai ∈ Rm, i = 1, . . . , n. A cone generated by the set of vectors {A1, . . . , An} is the following set

C :=

{
n∑
i=1

xiAi | xi ≥ 0, i = 1, . . . , n

}
⊂ Rm .

Notice that one can form a matrix A having the vectors Ai as its columns. In which case, the set C simply
becomes {Ax | x ≥ 0}.

A vector b ∈ Rm can be either inside the cone C or outside of it. Farkas’ lemma says that the latter case is
equivalent to the existence of a hyperplane with a normal vector µ ∈ Rm that separates the vector b from
the cone, formally:

∃µ ∈ Rm. Atµ ≥ 0 ∧ b · µ < 0 .

1. Take some time (less than 10mn) to try to prove the lemma (Bonus question)

2. Using Farkas’ lemma, prove that the strong duality holds in LP (except when both problems are
unfeasible).
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Answer. (Di�cult)

Let A{i} denote the matrix obtained from the matrix A by removing its ith column Ai. Let Vi denote
the following sub vector space of Rn

V{i} := {µ ∈ Rm | ∃λ ∈ Rn−1 µ = A{i}λ} .

We denote by V ⊥{i} its orthogonal vector space. In particular, V∅ denotes the sub vector space gener-
ated by the vectors Ai, making the cone C a subset of V∅.

We prove that b is in the cone C if and only if, for all µ ∈ Rm, either b ·µ ≥ 0 orAtµ 6≥ 0, that isAtµ
is not in the non-negative orthant (notice that this is not equivalent to Atµ < 0). We can rearrange
this as:

∀µ ∈ Rm, Atµ ≥ 0 =⇒ b · µ ≥ 0 . (1)

If b is in the cone, then (1) is necessary: indeed, there exists x ≥ 0 such that b = Ax. Assuming
Atµ ≥ 0 for some µ ∈ Rm, one gets

b · µ = (Ax) · µ = x · (Atµ) ≥ 0 .

We now prove that (1) is a su�cient condition to prove that b ∈ C . First, observe that Atµ ≥ 0 is
equivalent to Ai · µ ≥ 0 for i = 1, . . . , n. Since b ∈ Rm, we can write it as a sum of two vectors
β ∈ V∅ and β⊥ ∈ V ⊥∅ . By de�nition of β⊥, we have Ai · (−β⊥) = 0 for all i. Thus, according to (1)
(with µ = −β⊥),

b · (−β⊥) = (β + β⊥) · (−β⊥) = −(β⊥ · β⊥) ≥ 0,

and therefore β⊥ = 0 and b ∈ V∅.

Let λ1, . . . , λn ∈ R be such that b =
∑n
i=1 λiAi. We decompose b as follows:

b = λjAj +

n∑
i 6=j

λiAi = λj(αj + α⊥j ) +

n∑
i6=j

λiAi = λjα
⊥
j︸ ︷︷ ︸

∈V ⊥
{j}

+λjαj +

n∑
i 6=j

λiAi︸ ︷︷ ︸
∈V{j}

.

By de�nition of α⊥j , we have Ai · α⊥j = 0 for all i 6= j and

Aj · α⊥j = (αj + α⊥j ) · α⊥j = α⊥j · α⊥j ≥ 0 .

Thus, according to (1) (with µ = α⊥j ),

b · α⊥j = λjα
⊥
j · α⊥j ≥ 0,

and therefore λj ≥ 0, and b ∈ C .

The Farkas’ lemma serves also as a test to detect the emptiness of a polyhedron. To check whether
the exists x ∈ Rn+ such that Ax = b, it su�ces to search for µ such that Atµ ≥ 0 and b · µ < 0
which will serve as a witness for the emptiness test. Notice also that the lemma could be adapted to
any polyhedron of the form Ax ≤ b since, as we’ve seen during the course, we can always rewrite
the inequality as an equality over the non-negative orthant.

Now, let’s see how to use Farkas’ lemma to prove the strong duality of LP. Recall the primal and dual
formulations of LP.

min c · x
s.t. Ax = b (p)

x ≥ 0

max − b · µ
s.t. Atµ+ c ≥ 0 (d)
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For convenience, the set {µ ∈ Rm | Atµ+ c ≥ 0} can be rewritten as{
β ∈ R2m+n |

(
−At At In

)
β = c

}
.

We prove that

Case 1 If the primal is unfeasible and the dual is feasible, then the dual is unbounded.

Case 2 If the dual is unfeasible and the primal is feasible, then the primal is unbounded.

Case 3 If both are feasible, then the optimum are �nite and the optimal value of both the primal and
dual are equal.

Case1. If the primal is unfeasible, then by the Farkas’ lemma, there exists µ such that Atµ ≥ 0 and
b · µ < 0. Since the dual is feasible, there exists µ̄ such that Atµ̄+ c ≥ 0. First, observe that

At(µ̄+ αµ) + c = Atµ̄+ c+ αAtµ ≥ 0 .

Thus, µ̄+ αµ is feasible. Second, for all α ≥ 0:

−b · (µ̄+ αµ)− (−b · µ̄) = −α︸︷︷︸
≤0

(b · µ)︸ ︷︷ ︸
<0

≥ 0,

making the dual unbounded since one can improve the optimum by increasing α.

Case2. This is dual to Case1, and can be proven very similarly when working with the “equality”
reformulation of the feasible set of the dual as detailed above.

Case3. By the weak duality, we already know that −b · µ∗ ≤ c · x∗, where x∗ and µ∗ are the optimal
prime and dual respectively. We will prove that the strict inequality leads to a contradiction. Suppose
−b · µ∗ < c · x∗, if there exists an x̄ ≥ 0 such that Ax̄ = b and c · x̄ = −b · µ∗, it would mean that x∗
is not the optimum which contradicts the construction of x∗. Thus such x̄ doesn’t exist. Thus means
that the polyhedron {(

y
)
∈ Rn |

(
A
ct

)(
y
)

=

(
b

−b · µ∗
)}

is empty. By the Farkas’ lemma, there exists a vector,
(
β
z

)
∈ Rm+1 such that

(
At c

)(β
z

)
≥ 0 ∧

(
b

−b · µ∗
)
·
(
β
z

)
< 0 .

If z = 0, one gets Atβ ≥ 0 ∧ b · β < 0 and (recall that x∗ ≥ 0)

x∗ ·Atβ = Ax∗ · β = b · β ≥ 0

which contradicts b · β < 0.

If z > 0, then z−1β is feasible for the dual since

(
At c

)(β
z

)
≥ 0 =⇒ At

(
z−1β

)
+ c ≥ 0,

and (
b

−b · µ∗
)
·
(
β
z

)
< 0 =⇒ −b · µ∗ < −b ·

(
z−1β

)
.

This contradicts the fact that the dual has a �nite optimum reached for µ∗.

Finally, z < 0 leads also to a

(
At c

)(β
z

)
≥ 0 =⇒ At

(
z−1β

)
+ c ≤ 0,

and, using x∗ ≥ 0,
x∗ ·

(
At
(
z−1β

)
+ c
)

= b ·
(
z−1β

)
+ x∗ · c ≤ 0 (2)
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The second condition on the vector
(
β
z

)
∈ Rm+1 leads to(

b
−b · µ∗

)
·
(
β
z

)
< 0 =⇒ −b · µ∗ > −b ·

(
z−1β

)
.

But since we assumed −b · µ∗ < c · x∗, we get

c · x∗ > −b ·
(
z−1β

)
contradiction the inequality in (2). Since no such vector exists, the strict inequality we assumed
cannot be and the strong duality holds.

B. Duality
Consider the following optimization problem:

min
1 + cos(x)

−2 + cos(x)

s.t. cos(x) ≤ 0

x ∈ R

1. Is this problem convex ?

2. What are the extremal points of the objective function when the constraint is discarded ? Which
ones are feasible ? State simply why, in general for a constrained problem, an optimum may not be
extremal in the usual sense.

3. Solve the optimization problem (cf. to Figure 2)

4. State the Lagrangian as well as the dual problem.

5. Are all KKT conditions satis�ed ? Comment.

6. Compute the duality gap. (The exact numerical value is expected)

Answer. (Moderate)

1. The problem is non-convex in x. Actually the feasible set is not even connected.

2. When the constraint cos(x) ≤ 0 is disregarded, the extremal points are those on which the deriva-
tive vanishes. We can see from the �gure that the cost function reaches its minimum −2 when
x = 0[2π] (modulo notation). The function reaches its maximum 0 when x = π[2π]. When the
constraint is injected back, we see that 0[2π] are not feasible since cos(0) = 1 > 0, whereas π[2π]
are feasible. This shows why we can’t simply use the usual toolbox to �nd optimum values for con-
strained problems: the feasible set should be accounted for.

3. restricting our attention to x ∈ [−π, π], the feasible set is [−π,−π2 ] ∪ [π2 , π]. The optimal value
− 1

2 is reached on the boundary of the feasible set when x = ±π2 making cos(x) = 0.

4. As we have seen, we “inject” the constraint to form the Lagrangian as follows

L(x, λ) = f0(x) + λf1(x) =
1 + cos(x)

−2 + cos(x)
+ λ cos(x) .

To state the dual problem, we need to compute the dual objective function. By de�nition

g(λ) = min
x
L(x, λ),

and there are no constraints in x. So we can use the standard tools to compute such minimum for a
�xed non-negative λ. One �nds

g(λ) =

{
−2 + λ if λ ≤ 1
−λ otherwise
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The above result can be found by the usual calculation of the derivative and discussing the several
possible cases for λ. But this is not required, as one can recover the same result by drawing one
picture as we have seen during the course ().

The dual problem is then

max g(λ)

s.t. λ ≥ 0

and the dual optimum is −1, reached for λ∗ = 1.

5. Both the primal and dual are feasible for x∗ = π
2 [π] and λ∗ = 1 respectively. The complementarity

condition requires that λ∗f1(x∗) = λ∗ cos(x∗) = 0 is also satisifed. Finally, the stationarity condition

∇xL(x, λ) = sin(x)

(
3

(cos(x)− 2)2
− λ
)
,

and when evaluated on x∗ is doesn’t vanish as required by the KKT conditions. This is to be expected
as the original problem is non-convex and we don’t know a priori whether there are any constraint
quali�cations for it. As said during the course, outside the convex realm, the KKT conditions are
neither necessary nor su�cient in general.

6. The duality gap is the optimal primal minus the optimal dual, that is

− 1
2 − (−1) = 1

2 .

References

[Manders and Adleman, 1978] Manders, K. L. and Adleman, L. (1978). NP-complete decision problems for binary
quadratics. Journal of Computer and System Sciences, 16(2):168–184.

6



-1.0 -0.5 0.5 1.0
f1

-2.0

-1.5

-1.0

-0.5

f0

Figure 1: The blue (non-convex) line is f0 in the y-
axis function of f1 in the x-axis. The orange line is
the supporting hyperplane to the blue region for
λ ≥ 1. The green line is the supporting hyper-
plane for λ ≤ 1. The red line is the supporting
hyperplane for λ = 1. One can read the duality
gap from the graph.
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Figure 2: Plot of the objective function between
[−π, π]. The cosine function is also given for con-
venience
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