
Hybrid Theorem Proving of Aerospace Systems:
Applications and Challenges

Khalil Ghorbal,∗ Jean-Baptiste Jeannin,† Erik Zawadzki,‡ André Platzer,§

Geoffrey J. Gordon,¶ and Peter Capell**

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

DOI: 10.2514/1.I010178

Complex software systems are becoming increasingly prevalent in aerospace applications: in particular, to

accomplish critical tasks. Ensuring the safety of these systems is crucial, as they can have subtly different behaviors

under slight variations in operating conditions. This paper advocates the use of formal verification techniques and in

particular theoremproving for hybrid software-intensive systems as a well-founded complementary approach to the

classical aerospace verification and validation techniques, such as testing or simulation. As an illustration of these

techniques, a novel lateral midair collision-avoidance maneuver is studied in an ideal setting, without accounting for

the uncertainties of the physical reality. The challenges that naturally arise when applying such technology to

industrial-scale applications is then detailed, and proposals are given on how to address these issues.

I. Introduction

A IRCRAFT software is becoming increasingly complex, as shown by rising development costs. These software systems are safety critical:
their failure can lead to major catastrophes. Past examples include a collision between a military airplane and a drone over Afghanistan in

2011 [1] and the 2002 tragic midflight collision in Überlingen [2]. The Überlingen collision was not caused by a system failure but rather by
conflicting orders between air traffic control and onboard systems, which illustrates the significance of increasing trust in collision-avoidance
systems. Such incidents and accidents demonstrate that the certification of these systems needs to respond to increased system complexity by
becoming more exhaustive in the methods used to assure software. Relying on testing alone cannot achieve the desired requirements, as even the
most careful testing campaign can miss some errors, corner cases, and rare events.

Significant progress has recently been achieved to increase the reliability of critical software. Major aircraft manufacturers, such as Airbus
Industries, are now relying heavily on model-based architecture, model-based design, and certified code generation.†† It can be argued that an
analysis using models is currently the only approach to ensuring a safe development of highly reliable, complex systems [3]. There are numerous
immediate benefits to this approach, such as model reusability, compositional design, and certification cost reduction. However, the most
important impact for safety is that model-based design describes the system by many layers of abstraction, with each layer corresponding to a set
of refined models. These abstract models can then be used to reason formally about increasingly complex systems and to formally verify their
properties.

Formal verification and validation of systems involves mathematically well-founded methodologies for specifying and verifying the system.
In general, formal techniques have dual goals: either formally proving that the system meets its requirements, or searching for a specific
counterexample that falsifies a given property. Verification questions are not necessarily limited to functional requirements. Very often,
requirements such as safety or timing are crucial to certifying the system.

Many large-scale formal verification attempts have been successful in the past decade: for example, hardware model checking of the Intel
processor [4] is an outstanding achievement that increased the reliability of the basic computation units that any software relies on.More recently,
formal verification techniques were applied to check for numerical runtime errors in the Airbus A380 [5,6]. Such achievements demonstrate
improvements in the underlying theories and related technologies of formal verification. Formal verification is becoming crucial for verification,
validation, and certification of all safety-critical systems, and aerospace systems are no exception.

Formal methods are complementary to, and not a replacement for, the existing classical verification, validation, and certification approaches,
which are predominantly based on testing and simulation, including flight tests. Formal methods, including the hybrid systems theorem-proving
approach presented in this paper, provide an exhaustive approach, ensuring that a property is satisfied for all possible runs of the system. This
contrasts with a testing approach that usually tests a limited number of runs of a system, and it could easily miss some corner cases. Exhaustive
testing is limited to relatively small systems (even a system with seven variables, each with 1000 possible values, requires an intractable 1021 test
cases), and it cannot handle continuous variables: they generate an infinite number of tests. On the other hand, the hybrid systems theorem-proving
approach presented in this paper can handle infinitely many cases at once, as well as continuous variables.

In this paper, we focus on hybrid systems theorem proving [7,8], which has been applied tomany difficult problemswhere all other (formal and
classical) methods have failed [9]. A hybrid system [10] is a system that involves both discrete and continuous behaviors, such as with the
integration of discrete computer algorithms and continuous flight dynamics of an aircraft. Understanding such interactions is crucial for ensuring
that the system remains within safe boundaries, e.g., the aircraft is not close to stalling and is never too close to any other aircraft. Without
understanding the continuous motion of an aircraft in space, it is impossible to tell whether an aircraft might stall. But, one also needs to consider

Received 17 September 2013; revision received 14 June 2014; accepted for publication 28 July 2014; published online 1 October 2014. Copyright © 2014 by
K. Ghorbal et al. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or
internal use, on condition that the copier pay the $10.00 per-copy fee to theCopyrightClearanceCenter, Inc., 222RosewoodDrive,Danvers,MA01923; include the
code 2327-3097/14 and $10.00 in correspondence with the CCC.

*Postdoctoral Fellow, Department of Computer Science, 5000 Forbes Avenue, Gates Hillman Center; kghorbal@cs.cmu.edu.
†Postdoctoral Fellow, Department of Computer Science, 5000 Forbes Avenue, Gates Hillman Center; jeannin@cs.cmu.edu.
‡Ph.D. Student, Department of Computer Science, 5000 Forbes Avenue, Gates Hillman Center; epz@cs.cmu.edu.
§Associate Professor, Department of Computer Science, 5000 Forbes Avenue, Gates Hillman Center; aplatzer@cs.cmu.edu.
¶Associate Professor, Department of Machine Learning, 5000 Forbes Avenue, Gates Hillman Center; ggordon@cs.cmu.edu.
**Senior Member of Engineering Staff and Adjunct Professor, Software Engineering Institute, Department of Computer Science, 4500 Fifth Avenue; psc@sei

.cmu.edu.
††“Airbus— Esterel Technologies,” http://www.esterel-technologies.com/success-stories/airbus/ [retrieved July 2014].

702

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 11, No. 10, October 2014

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

http://dx.doi.org/10.2514/1.I010178
http://www.esterel-technologies.com/success-stories/airbus/
http://www.esterel-technologies.com/success-stories/airbus/
http://www.esterel-technologies.com/success-stories/airbus/

the discrete control decisions that determine the control input for the flight dynamics. As an illustration of the use of hybrid systems theorem
proving for aircraft, this paper focuses on the property of separation between two or more aircraft.

In Sec. II, we recall differential dynamic logic, which is a logic to reason about hybrid systems. This theoretical framework is used tomodel and
verify the system. As an illustrative example showing the use of differential dynamic logic for aircraft, we study a novel lateralmidair collision-
avoidance maneuver in Sec. III. The term “lateral” refers to the fact that, unlike current collision-avoidance systems where the pilot is advised to
either climb or descend, we explore the possibility of avoiding a potential collision by advising the pilot to maneuver laterally (steering) without
changing his altitude. To keep this particular study easy to follow, it does not account for any uncertainty (sensor noise, wind, etc.). Section IV
details how we can push our reasoning further within a more realistic noisy environment. We also give an overview of the current and future
challenges facing the formal verification community toward a successful application of these capabilities in full-scale industrial aerospace
applications. The related work is discussed in Sec. V.

II. Theorem Proving of Hybrid Systems

Our group at Carnegie–Mellon University has developed tools and techniques to model and prove properties of dynamic systems. Our main
theoretical tool is differential dynamic logic [7,8,11], which is a logic for specifying and verifying properties of hybrid systems. The hybrid
systems theorem prover KeYmaera [12] implements those and other logics in an automated and interactive theorem prover.

A. Differential Dynamic Logic

Differential dynamic logic [7,8,11] is the logic of hybrid systems, i.e., systems with interacting discrete and continuous dynamics. This logic
can model the system (e.g., the motion of aircraft, cars, or trains), as well as express properties about such systems. Because differential dynamic
logic comes with a proof calculus [7,8,11], it is both a specification and a verification language for hybrid systems.

We model systems being studied with hybrid programs, which is a programming language for hybrid systems. Hybrid programs combine
differential equations and conventional computer program constructs. Systems of ordinary differential equationsmodel continuous evolution of
variables, and they can be used to model relevant motion equations of aircraft. Instantaneous assignments can be used to represent the changes in
the set values that an autopilot performs. Tests are used to represent known constraints on the evolution of the system: either physical constraints
on parameters or conditions on the system execution. Sequential composition is used to execute one hybrid program after another finishes.

A central feature of hybrid programs isnondeterminism: it enablesmodeling and proving properties about systems that have parts not controlled
by the program. A nondeterministic choice is encountered when various control decisions can be made without any a priori knowledge about
which one will be triggered first. This is useful to describe, for example, the effect of other aircraft suddenly climbing or descending. We handle
this by accounting for all possible choices. Nondeterministic repetition is used to model control feedback loops. These operations are enough to
model all classical computer programs (including if and while statements), as well as all hybrid systems.

Once the hybrid programs have been defined, properties about the system can be expressed through the differential dynamic logic itself.
Differential dynamic logic is a combination of constructs used in arithmetic and logic. This logic can express comparisons (equality and
inequalities) of terms; negation (not), conjunction (and ∧), and disjunction (or ∨) of formulas; universal (for all ∀) and existential quantifiers
(exists∃), expressing properties such as “for all real numbers, a certain property is true” or “there exists a real number such that a certain property is
true;” and universal (�α�) and existential modalities (hαi) indexed by hybrid programs α expressing properties such as “a property is always true
after executing a certain hybrid program α,” or “a certain hybrid program α has at least one executionmaking a certain property true.” Since those
logical operators can be combined and nested in anyway, this results in a flexible logic for specifying and verifying a rich set of complex properties
of hybrid systems.

Aprecise semantics, i.e.,mathematicalmeaning, for hybrid programs and differential dynamic logic is beyond the scope of this paper but can be
found in the literature [7,8,11]. These references also provide rules to reason about the logic and to verify systemswithout having recourse to their
semantics. Those rules form a proof calculus for the logic. They are purely based on the syntax of terms, which means that they can be
implemented and used in a computer: for example, in the theoremproverKeYmaera. The proof calculus is sound, i.e., it is faithful to the semantics.
Furthermore, the proof calculus is complete relative to properties of differential equations, i.e., every semantically valid formula is provable in the
proof calculus from elementary properties of differential equations.

B. KeYmaera Theorem Prover for Hybrid Systems

KeYmaera [12] is a hybrid verification tool for hybrid systems implementing differential dynamic logic [7] and its extensions. It is an automatic
and interactive theorem prover. It is automatic, as it implements a set of proof strategies to automatically discharge the proof. It is also interactive,
as a user can help the tool by providing extra hints when the automatic strategies fail.

KeYmaera can be used to prove that a hybrid system satisfies its specification (correctness), does not show unsafe behavior (safety), remains
controllable (controllability), responds within a specified time (reactivity), and eventually achieves a specified goal (liveness).

KeYmaera has been used successfully for verifying properties of systems involving cars, trains, aircraft, and robots: local lane controllers for
highway car traffic [13], left-turn assist controllers for cars at intersections [14], intelligent speed adaptation for variable speed limit control and
incident management by traffic centers on highways [15], cooperation protocols of the European Train Control System [16], airplane collision
avoidance [17,18], obstacle avoidance for ground robots [19], and force feedback to the surgeon from a surgical robot [20].

In Sec. III, we discuss a variation of one of those systems (the curved flight collision-avoidance maneuver) in order to provide a sense of the
capabilities of the approach. This analysis yields new results for the analysis of collision-avoidance protocols and generalizes previous related
work [17].

III. Case Study: Curved Flight Collision-Avoidance Maneuvers

As airspace becomes more crowded, the design of safe and automated traffic management of airplanes becomes even more critical. Such
systems must be hybrid: the motion of each airplane is described by a set of continuous differential equations, whereas each pilot is allowed to
make discrete decisions to control the aircraft. In this section, we analyze an abstract model of an encounter between two aircraft. The findings
generalize to prevent collisions between three or more aircraft. Our analysis focuses on proving under which conditions an aircraft, henceforth
called the ownship, and an intruder could possibly collide. If a possible collision is detected, we explicitly give a set of safe, flyable choices that
prevent the collision from happening.

Naturally, the analysis of the real system requires further refinement of the model to account for real-world settings: flight disturbances, sensor
uncertainties, human behaviors, implementation issues, etc. Our current approaches to deal with such refinements are the topic of Sec. IV.

GHORBAL ETAL. 703

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

Section III.A recalls the differential equations that describe Dubins trajectories in absolute and relative frames. In Sec. III.B, we abstract the
trajectories using automatically generated functional invariants (first integrals), i.e., nontrivial functions that are constant along all solutions of the
differential equations. We then use these invariants to generate a safety monitor. The monitor will play a crucial role in our formal analysis,
presented in Sec. III.C, as it serves to synthesize safe commands for the system.

A. Flight Maneuvers Using Dubins Curves

Our conflict-resolution model is based on curved maneuvers, where we allow for curved paths in addition to straight-line motion. For a fixed
altitude, the planar path of an aircraft is modeled by a set of differential equations that captures the time evolution of the position and orientation of
an aircraft. We use kinematic models based on the standard Dubins vehicle models for aircraft [21–23].

Let us consider two aircraft numbered 1 and 2. We suppose that aircraft 1 is the ownship and aircraft 2 is an intruder. Aircraft i is modeled by a
single point in the plane with a safe surrounding disk. Its configuration is entirely determined by three variables: �xi; yi� ∈ R2 for its absolute
position, and θi ∈ �0; 2π� for its directionwith respect to the x axis (Fig. 1). Themotion of an aircraft i, i � 1; 2, with respect to an inertial frame is
described by the system of ordinary differential equations given in Eq. (1):

_xi � vi cos θi
_yi � vi sin θi

_θi � ωi (1)

The time variable t is implicit: its time derivative is equal to one for all frames: time evolves linearly and is absolute. The angular and linear
velocities of the aircraft (ωi and vi > 0) are considered as parameters. The angular velocityωi acts as a controlled input, stemming from the control
decisionsmade by the pilot. This allows the airplane to fly following a sequence of circular paths (ωi ≠ 0) and straight lines (ωi � 0): for instance,
in Fig. 1, the dotted lines show the projected trajectories of two aircraft with potentially conflicting paths: aircraft 1 is flying in a straight line,
whereas aircraft 2 is performing a hold (a standard procedurewith two circular and two straight-line legs that an aircraft maintains whilewaiting).
For a real application, one needs to account for the engine capabilities and functional limits (for instance, stalling) on the angular and linear
velocities that lead to additional constraints on ωi and vi.

The ownship is equipped with the following hybrid program, denoted cas, that captures the core principles of the collision-avoidance system:

pilot ≡ ω1 ≔ � (2)

cas ≡ �pilot; ?monitor;evolve�� (3)

The pilot, or autopilot, of the ownship first sets the angular velocityω1 of the airplane to an arbitrary real number [the wildcard � in Eq. (2)]. The
expression “evolve” in the hybrid program cas encodes the set of differential equations describing the evolution of the intruder relative to
the ownship.We use the relativemotion of the intruder with respect to the ownship by representing themotion equation relative to a frame fixed to
the ownship (Fig. 2). With respect to this relative frame, the set of ordinary differential equations is given in Eq. (4):

_x � v2 cos θ − v1 � ω1y

_y � v2 sin θ − ω1x

_θ � ω2 − ω1 (4)

where x, y, and θ denote, respectively, the relative position and direction of the intruder with respect to the ownship. The relative equations are
obtained from the absolute ones [Eq. (1)] by computing the time derivative of the relative position of the intruder with respect to the ownshipwhile
accounting for the angular velocity (along the axis orthogonal to the plane) of the rotating frame fixed to the ownship.

Fig. 1 Planarmotionof twoairplaneswith respect to an inertial frameof reference.Dotted lines showan example of flyable trajectories that themodel can
describe.

704 GHORBAL ETAL.

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

The next section discusses our approach to generate an expression formonitor [Eq. (3)].Wewant the expression formonitor to ensure that
the current and future behaviors of the pilot always preserve safety.

B. Safety Monitoring Using Differential Invariants

In Eq. (3), the role of the monitor is to check whether the chosen action ω1 of the ownship is safe, assuming that the evolution of the involved
aircraft is governed by the differential equations given in Eq. (4). The question-mark symbol (?) tests whether the safety condition is satisfied. The
test can be regarded as a filter that rules out unsafe decisions: a failed test should be understood as an unsafe, and immediately discarded, decision
on ω1. Hence, monitor imposes conditions on the safe choices for ω1. If the test succeeds, the airplanes will evolve following their respective
dynamics described by the set of ordinary differential equations given in Eq. (4). If, however, there are no safe choices for ω1, then the collision-
avoidance system reaches its operational limit. This casewill be further discussed at the end of this section. Finally, the asterisk (�) operator, in the
exponent of Eq. (3), means that this sequence of 1) discrete control, 2) monitoring, and 3) continuous evolution can be repeated any number of
times. It thus describes the operational nature of the collision-avoidance system, which keeps on repeating any number of times as necessary.
Indeed, any flight can be abstracted as a sequence of pilot decisions and evolution according to the laws of motion.

To generate a safe and nonrestrictive monitor in Eq. (3), it is critical to effectively reason about the behavior of the solutions of the differential
equations. Although a closed-form solution of Eq. (4) is known, handling it symbolically would require automated procedures to reason about
transcendental functions, a problem that is undecidable in general. Instead, we proceed with a qualitative analysis of the solutions by means of
differential invariants [24]: functions that remain constant when evaluated along any solution of the differential equations. In [25], it is established
that such invariants can be characterized exactly using higher-order Lie derivatives, allowing for an automated and efficient generation procedure
based on symbolic linear algebra.‡‡ This characterization is used to generate a set of constraints on the coefficients of a parametric polynomial
(template) of a fixed degree. If a solution is found, we have an invariant. Otherwise, the degree is augmented and we look for a solution to the new
set of constraints.

When �ω1;ω2� � �0; 0�, the direction θ�t� of the intruder relative to the ownship stays constant over time; that is, θ�t� � θ�0� for all t. In this
case, using the technique described in [25], we automatically generate the following nontrivial invariant function:

I1�t� ≡ �v2 sin θ�0��x�t� − �v2 cos θ�0� − v1�y�t� � I1�0� (5)

The quantity I1�t� is an invariant because its time derivative _I1�t� is zero for all t. The invariant function describes the relativemotion of the intruder
as a line in the phase space �x; y�. This line is entirely defined by the initial configuration x�0�, y�0�, and θ�0�.

On the other hand, when �ω1;ω2� ≠ �0; 0�, we automatically generate the following, nontrivial invariant function:

I2�t� ≡ −ω1ω2�x�t�2 � y�t�2� � 2v2ω1 sin θ�t�x�t� � 2�v1ω2 − v2ω1 cos θ�t��y�t� � 2v1v2 cos θ�t� � I2�0� (6)

Again, I2�t� is an invariant because its time derivative _I2�t� is zero for all t. In this case, the relativemotion draws a nontrivial helical trajectory (the
radius of the circle changes over time) in the three-dimensional phase space �x; y; θ� (see Fig. 3).

From the invariants I1�t� and I2�t�, we now sketch howwe derive a sufficient condition on the initial conditions, as well as the input commands,
in order to avoid a collision. We illustrate the case where �ω1;ω2� � �0; 0� in detail and then summarize the result for the case �ω1;ω2� ≠ �0; 0�,
for which an analogous derivation works.

We want the distance r�t� between the two aircraft �r�t�2 � x�t�2 � y�t�2� to always remain greater than a given safety bound p > 0 at all
times:

safety ≡ ∀ t ≥ 0; r�t� > p (7)

Assuming �ω1;ω2� � �0; 0�, from Eq. (5), �x�t�; y�t�� moves along a line encoded by I1�t� � I1�0�, where the constant I1�0� ∈ R is entirely
defined by the initial configuration �x�0�; y�0�; θ�0��. We use this automatically generated invariant to manually derive a necessary condition on
the initial configuration when a collision occurs anytime in the future. From there, we derive a sufficient condition (on the initial configuration)
that preserves the separation property:

Fig. 2 Planar motion of the intruder with respect to a relative frame embedded in aircraft 1.

‡‡The sine and cosine functions can be encoded algebraically as in [24].

GHORBAL ETAL. 705

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

jI1�0�j � jI1�t�j (8)

� j�v2 sin θ�0��x�t� − �v2 cos θ�0� − v1�y�t�j (9)

≤ v1jy�t�j � v2r�t�
���� x�t�r�t� sin θ�0� − y�t�

r�t� cos θ�0�
���� (10)

≤ v1r�t� � v2r�t� (11)

In Eq. (10), we used the fact that j�x�t�∕r�t�� sin θ�0� − �y�t�∕r�t�� cos θ�0�j is equal to j sin�θ�0� − α�t��j, where the angle α�t� is such that
cos α�t� � x�t�∕r�t� and sin α�t� � y�t�∕r�t�. If a collision occurs, then there exists t > 0 such that r�t� ≤ p. Therefore, fromEq. (11),we obtain

safety → jI1�0�j ≤ �v1 � v2�p (12)

where the arrow (→) denotes the logical implication. By contraposition, this leads to the following sufficient condition on the initial configurations
to ensure the safety [when �ω1;ω2� � �0; 0�]:

jI1�0�j > �v1 � v2�p → safety (13)

Figure 4 depicts the safe region (gray) for v1 � 1, v2 � 2, ω1 � ω2 � 0, and p � 1. The disk of radius p around the ownship depicts the safe
separation distance that we want to keep between the ownship and any intruder at all times. For a given initial (relative) configuration
�x�0�; y�0�; θ�0��, if the line defined by the equation I1�t� � I1�0� of the �x; y� plane is included in the gray region then the motion is safe as long
as �ω1;ω2� remains equal to �0; 0�. For instance, the black dashed line in Fig. 4 is a safe configuration. However, when the line I1�t� � I1�0�
intersects the white region, the motion cannot be proven safe using the invariant I1�t� � I1�0�. This does not necessarily mean that the motion is
unsafe: we may observe false alarms when the motion is safe but cannot be proven. The use of invariants instead of the actual solutions of the
differential equation as well as nonequivalent inequality bounds, as in Eq. (11), are two common sources for false alarms. Hence, reducing false
alarms requires more refined analysis, where one targets the sources of large overapproximations.

Following similar reasoning, when �ω1;ω2� ≠ �0; 0�, we derive the following sufficient condition:

jI2�0�j > 2v1v2 � 2p�v2jω1j � v1jω2j� � p2jω1ω2j→ safety (14)

In this case, the safe region is a three-dimensional region in the configuration space �x; y; θ� described byEq. (14). The projection of the safe region
on the �x; y� plane is depicted in gray in Fig. 5. Given an initial relative configuration �x�0�; y�0�; θ�0��, if the projection of the curve described by
I2�t� � I2�0� lies in the safe region, then the relativemotion is proven safe. If, however, the projection of the curve intersects thewhite region, our
analysis fails to prove safety. The black dashed curve depicts a safe trajectory in relative coordinates for v1 � v2 � 2, ω1 � −1, ω2 � 1,
and p � 1.

Fig. 3 Helical trajectory in the three-dimensional phase space �x;y;θ�.

Fig. 4 Safe region (gray) relative to the ownship, centered in the disk of radius p � 1, when �ω1;ω2� � �0;0�.

706 GHORBAL ETAL.

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

The monitor of our collision-avoidance system [Eq. (3)] combines the safety bounds given in Eqs. (13) and (14) for the cases of zero and
nonzero angular velocities, respectively:

monitor ≡ �ω1;ω2� � �0; 0� → I1�0� > p�v1 � v2� ∧
�ω1;ω2� ≠ �0; 0� → I2�0� > 2v1v2 � 2p�v2jω1j � v1jω2j� � p2jω1ω2j (15)

C. Formal Safety Verification

In this section, we use the monitor generated in the previous section to formally verify our collision-avoidance system.
Theorem 1: (The collision-avoidance system casmeets its safety requirement.) The following dL formula, expressing that the safety property

always holds for the whole system, is valid, i.e., it is true in all states:

safety → �cas�safety (16)

where cas is given in Eq. (3) and safety is defined in Eq. (7).
Theorem 1 states that, if two airplanes start at a safe state (where the separation is respected), and if the monitor defined in Eq. (15) is satisfied,

then the evolution of the system is safe, hence collision-free, for all possible executions of the system. The proof obtained with KeYmaera [using
an encoding of the transcendental functions (sine and cosine) with extra variables],§§ together with Theorem 1, can therefore be used to certify that
our model meets its safety requirement and ensures the separation of the equipped ownship from an intruder. The proof tree has 21 branches and
240 nodes. With a highly interactive proof strategy (200 interactive steps), the computation time to discharge the proof obligation takes less than
60s on a standard desktop (4 GB of RAM and Intel Core 2 Duo 2.66 GHz).

In addition to proving safety, Theorem 1 can be used to determine which control choices for the ownship will remain safe. For given linear
velocities v1 and v2; the intruder’s angular velocity ω2; and the desired separation p, the set of safe control inputs ω1 for the ownship can be
computed as those that satisfy monitor formula (15). For a concrete scenario �v1 � v2 � 2;ω2 � 1; p � 1� in which the intruder is flying on a
circular path, Fig. 6 illustrates the beginnings of the unsafe trajectories resulting from the set of all ω1 control choices that are deemed unsafe,
because they do not satisfy the monitor [Eq. (15)]. The dashed trajectory shows the path of the ownship forω1 � −1. This particular choice ofω1

satisfies the monitor and is hence safe. Observe that the curved dashed line is entirely outside the potentially unsafe meshed zone.
When the ownship detects multiple intruders in its surroundings, the same constraints [Eq. (15)] can be used for each intruder to ensure

separation by suitable coordination. Figure 7 shows a configuration with three aircraft where the meshed zone depicts the trajectories resulting
from an unsafe command ω1 being selected by the ownship. Observe how the meshed zone evolved from Fig. 6 where only one intruder was
involved. The choices that are proven safe for the ownship are considerably reduced. The selected dashed trajectory (ω1 � −1) permits once again
to evolve safely.

Figure 7 suggests that there exist scenarioswhere the ownship is “trapped”; that is, no proven safe choice exists for the ownship. In such cases, if
all involved aircraft are equipped, the system can try to find an instantiation of commands �ω1;ω2; : : : � (within their respective physical limits) for
which the pairwise safety condition [Eq. (15)] of each of the two players is satisfied.¶¶ When no such safe global collision-free choice exists,
however, the system reaches its operational limit: it can no longer give a safe advisory to resolve the conflict.

IV. Aerospace Challenges

Aircraft and other physical systems do not always operate in ideal conditions. Physical reality is a noisy place, and aircraft interacting with
reality must handle the resulting uncertainty. There are many examples of situations where understanding uncertainty is critical to faithfully
rendering an aircraft, so it is important for representations and reasoning systems for aircraft to handle uncertainty concisely, simply, and
accurately. In this section, we first discuss why uncertainty poses a challenge for our approach to verification, howwe are currently handling these
issues, and howwe expect to finally resolve them.We also classify the current and future challenges in the aerospace domain.We distinguish four
different categories: uncertainty (Sec. IV.A); proof automation (Sec. IV.B); numerical issues (Sec. IV.C); and finally, scalability (Sec. IV.D).
Although not exhaustive, our classification is driven by the difficulties we have encountered analyzing real aerospace systems. The classification
is also guided by the progress made in general by the formal verification community.

Fig. 5 Projection of the safe region (gray) relative to the ownship, centered in the disk of radius p � 1, when �ω1;ω2� ≠ �0;0�.

§§The models and proof files are available online at http://www.lix.polytechnique.fr/~ghorbal/aerospace [retrieved 2014].
¶¶Notice that such an approach assumes that involved aircraft can communicate and that pilots are compliant with no delays.

GHORBAL ETAL. 707

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

http://www.lix.polytechnique.fr/~ghorbal/aerospace
http://www.lix.polytechnique.fr/~ghorbal/aerospace
http://www.lix.polytechnique.fr/~ghorbal/aerospace
http://www.lix.polytechnique.fr/~ghorbal/aerospace

A. Uncertainty

1. Uncertain Parameters and Component Faults

Acommon kind of uncertainty is with respect to conditions inwhich a plane is expected to operate. A plane is designed to be able to operate in a
variety of atmospheric conditions (air speed, turbulence, and so forth). The same control signals in an aircraft may have different outcomes
depending on the exact same atmospheric conditions, and this uncertainty must be accounted for. Our best choice to fully model such behavior of
the plane may be to represent it as a distribution over outcomes fitted from data using suitable models.***

For example, wind is an uncertain force that affects the velocity of a plane. A collision-avoidance advisory system should be robust to wind
conditions that are common enough: anymaneuver that requiresmore accurate position control than is possible under reasonablewind conditions
should be rejected. It is difficult to represent probability distributions in hybrid systems. Stochastic information can be incorporated into hybrid
system models leading to stochastic hybrid systems, for which logic can be lifted [26]. However, the verification of stochastic hybrid systems is
quite nontrivial.We therefore resort to nondeterministic choice as a simpler sound overapproximation of all possible behaviors. For instance, our
hybrid system models would handle the windspeed uncertainty as a variable that nondeterministically takes a value in some region. This region
should be selected such that it encompasses a range of “reasonable wind conditions.”

Selecting this region is currently a matter of human judgment. If an uncertainty outcome is judged sufficiently common, then we will
conservatively allow this outcome to occur nondeterministically. This assumes that any uncertain parameter’s value is chosen by a hypothetical
“adversary”who is trying to derail our attempts to prove system safety: the adversary is some subspecies of Cartesian demon.†††Ceding toomuch
control to our adversary makes proving results either difficult or impossible. If, in our models, we hand total control over all uncertainty to the
adversary, we will be unable to prove that planes could have left the ground in the first place, much less successfully avoid collisions midair.

Onemust therefore ignore (or abstract) sufficiently unlikely and unimportant events.We cannotmodel every possible event fromdeep in the tail
of a probability distribution: we do not want to model glancing blows frommeteors, which would make the aircraft system unsafe but are beyond
our control anyhow.Wemust also omit events in a principled fashion or our model will be too optimistic in a way that will be difficult to quantify.

For the purposes of verification, we want a global bound Δ on the total joint probability of the events we ignore. Since our proof is based on
ignoring these events, this bound licenses us to certify that our proof applies with probability 1 − Δ. To simplify our proving task, we currently
decompose this global probability bound into a series of bounds on the range of parameters. This decomposition ensures that we do not have to do
complicated probability calculations every time we make a nondeterministic choice in our proof.

Fig. 7 The meshed zone, as in Fig. 6, accounts now for the additional intruder. The dashed trajectory shows a proven safe choice for the ownship.

Fig. 6 The meshed zone depicts the projection of the trajectories that results when an unsafe command ω1 is selected. The dashed trajectory shows a
proven safe choice for the ownship.

***However, using a joint distribution that is far from the true uncertainty in, for example, Kullback–Leibler divergence may lead to subtle errors in the overall
model.

†††This adversary is just a way of explaining a worst-case analysis; we are not describing a true game theoretic setting here.

708 GHORBAL ETAL.

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

The exact form of a parameter bound is something that the prover could pick during the proving process; the bounds do not have to be set a
priori. A particular parameter’s bounds could themselves be a parametric shape (corresponding to, e.g., a fixed distribution’s confidence
intervals). The prover is free to pick these shapes as long as the joint probability of all of these shapes exceeds the global probability bound 1 − Δ.
This gives our provermore flexibility than if wewere to a priori set the bounds, and this additional freedommight be important for proving safety.

Estimating the joint probability boundΔ is essentially an integration question. At a high level, ifΩ is a set of all possible joint parameter settings
(e.g., x ∈ Rn), E ⊂ Ω is the set of all joint settings that satisfy the local bounds (e.g., a box E � fx ∈ Rnjli ≤ xi ≤ uig), andp is a joint probability
density function (e.g., a multivariate normal distribution), then we want to find a small Δ such that

Δ ≥ 1 −
Z
E
p�x� dx

Computing this integral exactly is, in general, not possible. The challenge is to find local bounds that allow us to easily prove safety while
simultaneously permitting tight approximations of this integral. Theremay be a natural tradeoff, inmany problems, between ease of proof and the
strength of the probability bound.

2. Sensor Uncertainty

Another source of uncertainty is an aircraft’s estimates about its state. In the collision-avoidance example, the state of both planes (e.g., their
positions and their velocities) were used in the model in Sec. III, but they are really estimated from a number of different noisy sensors, including
radar and GPS positioning information broadcast by automatic dependent surveillance–broadcast (ADS-B). Planes need to form an accurate
understanding of theworld with noisy sensors and do this by fusing the measurements from different sensors over time in order to filter out noise.
This process of filtering noise (updating state estimates based on noisy information) poses several interesting challenges for verification.

First of all, uncertainmodels are larger andmore difficult to reason about than certainmodels of the same system. This is one of the reasonswhy
it is beneficial to first start a formal analysis under ideal-world conditions and then proceed to include uncertainties, because if the system is
already unsafe under ideal-world sensing, it is not safe to be used in the real world. To take sensor uncertainty into account, we need to represent
both the state of the plane and the plane’s estimates about its own state. This is necessary because the plane’s control systems (such as the pilot, or
any automated system) can only react to its estimates, but their actions will take effect on the true state. The plane’s beliefs about position are a
”first-class citizen” of the proof that need to be modeled in the underlying logic.

Second,we need to reason about filtered estimates in a safeway. For example,we currently bound the beliefs of the entities in our verification of
a robot collision-avoidance problem [19] by some static confidence region centered at the true location of robot; thewidth of this region is based on
sensor quality. The robot’s estimate of its position corresponds to the immediate sensor information. The robot never compares this measurement
to any past measurements: it does not filter at all.

There are alternativeways to update estimates that consider past observations. AKalman filter, for example, is the optimal way to estimate state
for linear dynamical systems with Gaussian noise [27]. Updating estimates in this way tends to be more accurate than enthusiastically discarding
past observations. This extra precision allows collision-avoidance policies that are less conservative about uncertainty and are more efficient
because they require smaller margins: for example, the distance between planes passing each other at different altitudes. Smaller safety margins
means fewer “false alarm” advisories, which waste fuel and may fray the pilot’s nerves, undermining the credibility of the system.

Unfortunately, if we hand over control of our sensors to our proof adversary, the adversary canmaliciously pick noise that is highly correlated or
anticorrelated. This could cause filtering algorithms to form very inaccurate state estimates; a filter was designed for a distribution of sensor noise,
and our adversary can break the filter by picking a sequence of sensor measurements that is entirely unrepresentative of the assumed noise model.
This is possible even if we restrict the adversary to measurements that are individually within some local 1 − δ confidence region.

Therefore, either we need to recommend that planes use inefficient policies that, like in [19], do not filter, or we need to further restrict the
sequences that a proof’s adversary can employ.Wewant to restrict the adversary to sequences that never have subsequences that are too unlikely:
for example, asserting that all measurement subsequences of length k have some minimum probability. How this should be done efficiently in
verification is an interesting, open problem.

3. Controllers that Deal with Uncertainty: Aircraft Collision-Avoidance System X Case Study

Controllers designed for uncertain settings are difficult to formally reason about. The controller synthesis problem is, by itself, difficult. Due to
this difficulty, we might be forced to use synthesis methods that use potentially unsafe heuristics (although, reasonable heuristics should be safe
with high probability). Since the resulting controller may not be safe, we need a separate, sound verification procedure.

Control policies may also be tough to represent compactly.We have been grappling with this representation issue on the 10th aircraft collision-
avoidance system (ACAS X) [28]. This system, a successor to the traffic alert and collision-avoidance system (TCAS), suggests pilot actions
(from a small number of discrete advisories) whenever two or more planes are close enough to each other in midair to risk a near-midair collision
(NMAC), i.e., an unacceptable proximity value.

The control policy for this system (i.e., a function that maps from the system state to advisories) is found by discretizing the joint state space of a
two-plane encounter. The exact discretization scheme is subject to change, but one can imagine a continuous dimension of state, like altitude,
being represented by an integer multiple of meters in some reasonable range of common altitudes. The system’s dynamics are encoded in this
discrete state space as probabilistic transitions between discrete states (this abstracts away underlying details of the physics, which the hybrid
systems techniques handle). Undesirable behaviors and states are described by assigning a cost to certain state–action pairs. These costs are based
on features likewhether the state is a NMAC andwhether the action reverses the previous resolution advisory: repeatedly reversing suggestions is
jarring to the pilot.

Modeling the continuous dynamics discretely in this way yields aMarkov decision process (MDP): a common decision theory frameworkwith
several effective algorithms for finding optimal policies for an MDP (see, for example, [29]). MDPs are solved by dynamic programming
algorithms that propagate the costs of states and actions to the states and actions that lead to these states. Discrete optimal policies foundwith these
dynamic programming algorithms form the basis of the continuous state-space ACAS X controller. Every continuous point falls in the
neighborhood of a number of discrete points, and theMDP solutions at these neighboring discrete points are linearly interpolated to find the cost of
different actions at the continuous point.

The MDP controller is synthesized using a discretized model of our dynamics, but we want to prove its safety using more faithful continuous
dynamics. (In fact, the policy might not even be safe for the discrete dynamics. This is due to the fact that operational considerations like ”not
bothering the pilot” are incorporated into the cost function.) In principle, we could explicitly represent the controller in our logic and try to directly

GHORBAL ETAL. 709

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

prove its safety. However, even in a compact representation, the MDP policy is hundreds of megabytes large, which is monstrously large for all
existing hybrid systems verification tools.

Instead, we suggest a two-stage method for proving safety with respect to the continuous dynamics. First, the theorem prover is employed to
find sufficient conditions for safety in the hybrid systems model, with its differential equations describing the continuous dynamics. These
conditions take the form of safe regions in the continuous state space for each action. Boundaries are described with low-order polynomials. The
regions have the semantics that, if you start in Sa (the safe region for action a), then you will remain safe as long as you execute a. These safe
regions are related to the monitors discussed in Sec. III. If one is in the intersection of two safe regions (i.e., in Sa ∩ Sb), then there are at least
two safe actions to choose from. The system has a problem if it is in no safe region Sa.

With these safety regions, we can check that the possible chains of actions recommended by a policy are all safe. In theMDP policy for ACAS
X, this is a simple geometric problem that can be done in parallel. We do this by partitioning the continuous state space and checking each cell. If
action a is recommended anywhere in cell C, then that resolution advisory is safe if C is contained in the a safety region: C ⊆ Sa. If a partition
contains possibly unsafe cells, then we either refine the partition in these cells or give up and report the problematic cells. If every cell is safe, then
we conclude inductively that the policy is safe: we only jump from safe action to safe action.

This two-stagemethod offers two advantages over themore directmethod of explicitly representing the policy. First, the safety regions aremore
compact symbolic regions than the MDP policy and easier for the theorem prover to reason about. (The safety-region polynomials were much
more compact than any representations we tried for either the optimal value function or the policy regions for the ACAS XMDP. This included
both lossless representations that tried to exploit regularity in the data and representations that allowed a small amount of loss.) This is because
safety regions abstract away a lot of the details theMDPs had towrestlewith, and they use a symbolic polynomial representation that is richer than
the tabular representation used by theMDP. Second, finding the safe regions is decoupled from checking that a specific policy actually is safe. So,
if the exact details of the policy are altered, we can simply reuse our safe regions and focus on checking that the new policy is still safe according to
these regions without having to redo the hybrid systems safety proofs.

This approach clearly complements the use of probabilistic model checking to verify the ACAS X policy table [30].

B. Proof Automation

Automation for formal verification and validation is a key factor to integrating its use in industrial contexts. This is evenmore crucial when one
wants to use such tools in a design loop in early development stages.Although nowadays engineers aremore andmore familiarwith the theoretical
background behind these approaches, full automation is an active area of research to expand the reach of formal verification and validation. In
addition to the usual curse of dimensionality, expressive languages (although very useful in practice) also have their challenges in analysis, as they
allow the design of heterogeneous aspects of the systems. The typical example in hybrid systems modeling languages is the ability to mix
continuous (dynamics) and discrete (control) evolutions of time, which is crucial to understanding the interactions of advanced control with
dynamics.

We are currently working on new ideas to reduce the needed number of interactions with the theorem prover. More precisely, in addition to the
automated generation of differential invariants (such as I1 and I2 in Sec. III), wewant to automate the generation of the safety bounds (such as the
safety monitor in Sec. III). Such directions have been recently explored within our group [31].

C. Numerical Issues

A computer cannot effectively perform real numbers computations. Real numbers are always truncated to fit a specific finite representation,
which is more suitable for machines. Floating and fixed-point representations are the two commonly used finite representations. The challenge is
that the models and flight control algorithms are usually designed assuming real numbers arithmetic. Real numbers are accurate for modeling the
continuous behavior in the system, including the evolution of positions and orientations of the aircraft. However, the internal control
implementation will ultimately work only with finite-precision arithmetic, which deviates from the true real state of the system and might lead to
errors that accumulate over time. Therefore, the discrepancy introduced by approximating real numbers by finite representations needs to be
accounted for. KeYmaera does not have a built-in way of addressing floating-point or fixed-point arithmetic.

There are formal verification tools, such as Fluctuat [32], that are designed to formally check the robustness and stability of numerical
algorithms: that is, determine bounds on the error introduced by floating-point computations. But, those tools can neither reason about the
differential equations describing the aircraft dynamics nor about the true state of the aircraft in terms of its real position, velocity, and orientation.
Tools like Fluctuat thus often lead to rather pessimistic overapproximations because they lose the functional relations between the actuator
(output) and the sensor data (input).

Consequently, theorem proving of hybrid systems should be leveraged to model and reason about the continuous part of the system and help
tools like Fluctuat to tighten their approximations and increase the accuracy of their results. Conversely, KeYmaera could use the bounds and
numerical relations discovered by Fluctuat as an overapproximation for the error introduced by the finite-precision number arithmetic.

D. Scalability

As stated earlier in this paper, formal verification tools do not and should not claim to solve all verification problems of all aspects of all systems.
Nevertheless, even after abstracting away unwanted details, the scalability of the formal verification tools still remains one of the biggest
challenges for the community.Many tailored solutions have been successfully tested for abstract interpretation [5,33], each tuned for one specific
property. The state-space explosion in model checking is yet an active area of research since its introduction in the early 1980s (see [4] for a
survey). Similar issueswere noticed in other branches of computer science earlier, e.g., the curse of dimensionality observed byBellman [34]. The
framework has already pushed further the boundaries that previous approaches were limited to [8,11]. It allows for sound compositional
verification of (linear and nonlinear) hybrid systems. That is, the system is decomposed into subsystems, and then each subsystem is analyzed
independently from the other parts. This approach allows for the verification of real-world systems as it focuses on one smaller part at a time. Our
current work focuses on pushing further the automation of the decomposition and abstraction procedures.

V. Related Work

The freshly published DO-178C [35] standard about the certification guidelines for commercial software-based aerospace systems explicitly
supports the use of formal methods as a new standard to ensure high-quality software for critical systems. Both software model checking [36] and
abstract interpretation [5,37] have been shown to help verifying the complex software of current aircraft.

Nevertheless, having an aircraft in which software runs as expected does not necessarily prevent collisions from happening. Indeed, such
analysis needs to consider the behavior of the aircraft (in addition to its embedded software) within its operational environment. This property

710 GHORBAL ETAL.

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

makes aircraft essentially hybrid, because they involve both continuous flight dynamics and discrete control software, which is a combination that
is out of scope for software model checking [36] and abstract interpretation [5,37]. Formal verification and validation techniques for hybrid
systems such as theorem proving [7,8,11] are suitable, as we have illustrated in the collision-avoidance case study of Sec. III.

The benefit of formally verifying a collision-avoidance system is obvious: missing corner cases is unacceptable. Although exhaustive stress
testing is infeasible, formal methods aim at proving the absence of mishaps, which is a highly desirable property. As a matter of fact, many
collision-avoidance systems have been proposed (see [38] for an overview), but only few attempts have beenmade to formally verify such systems
[23,39–41]. Nonverified collision-avoidance systems, such as those based on probabilistic modeling methods (e.g., [42,43]), have the advantage
of being designed to cope with the noisy physical environment. However, this leads to discrete time and space approximations of the motion of
involved aircraft, leaving open questions about the error that these approximations induce on the overall behavior of the system.On the other hand,
although easier to verify, worst-case modeling (e.g., [44,45]) is too conservative. It assumes uniform distributions of events and resorts often to
either large or nonflyable approximations of the dynamics. Likewise, the verification (not the design) of collision-avoidance systems based on
controllable sets [23,46] uses either simplified (usually nonflyable) approximations, such as a succession of straight-line segments or instant turns
as in [23]; or it falls back on nonexhaustive numerical testing when the computation is too complex [46]. Numerical computation of the reachable
sets of hybrid systems by means of partial differential equations [47] has been applied to design and verify the safety of collision-avoidance
systems for which an analytic solution is available. Such an approach is interesting, especially in sufficiently low dimensions, but it is not
necessarily sound because of numerical errors that can accumulate. Notice also that the computation of reachable sets is hard to automate, except
for hybrid systems with linear dynamics [48].

Previous approaches of using theorem provers, such as PVS (in [39,40]), for collision-avoidance systems were helpful but also ignored
the flight dynamics and usedmore abstract geometrical considerations such as straight lines. Once again, themain problem one faces in this case is
the lack of any formal link between the aircraft model and its geometrical approximation. In addition, using a hybrid theorem prover such as
KeYmaera, enriched with specific proof rules to reason about the continuous dynamics, is much more suitable for systems that are essentially
hybrid.

The hybrid system theoremproverKeYmaera has been used to formally verify a circular roundaboutmaneuvermodeled byDubins curves [41].
The full capabilities of such a protocol, proposed first in [23], were formally verified and even refined with flyable entries and exits.

The proposed approach in this work is different form [23,41], in that it is not protocol-based. It hence allows for more flexible, yet flyable,
collision resolutions. The verification does not consider an approximated, a continuous, nor a discretized trajectory, as in [23,39,40]. The analysis
is performed with respect to the continuous motion of aircraft. Yet, it allows for the selection of a feasible control input as in [23,46,47], leading
naturally to a flyable resolution of conflicts. It is, however, desirable to refine the considered model with relevant uncertainties in the sensing and
actuation, as in [42–45], which we leave as a future work.

Apart from collision avoidance, other aircraft maneuvers were also formally verified. For instance, the PVS theorem prover was used to prove
the safety of an aircraft landing protocol [49,50]. In [51], the safety analysis of the aircraft autolander was performed by means of a numerical
computation of reachable sets. More recently, the distributed extension of the KeYmaera and its underlying logic was used to verify safe
separation in a system with arbitrarily many aircraft or unmanned aerial vehicles (UAV) [18].

VI. Conclusions

The differential dynamic logic (dL) framework gives an expressive and rich language for a formal description of hybrid systems. It comes with
effective syntactic proof rules that were proven successful in different case studies, including applications in the domain of aviation. The main
challenges to extend the presented approach to formally verify real aerospace systems are sketched and different promising proposals of solutions
are given. The complexity and nature of the aerospace systems require a mixture of formal methods and classical empirical approaches to verify
and validate the behavior of all parts of the system design and implementation. The drawbacks of one method are usually diminished, if not
eliminated, by the complementary use of another approach. For instance abstract interpretation techniques can significantly improve the
scalability of the analysis, whereas theorem proving turns out to be crucial to reason about high level abstraction that requires precise analysis and
the handling of the flight dynamics. In the same vein, model checking can be used to reach a better coverage of the state space even for properties
that are still out of reach for abstract interpreters. With the astonishing advances in formal methods, and the surprisingly strong analysis that is
possible today, it is believed that formalmethodswill become, and remain, a crucial ingredient in the design and certification of aerospace systems
as supported by the recently published software considerations DO-178C. Indeed, runs of a model checker or abstract interpreter give evidence
that parts of the aerospace system function correctly, and this evidence should be incorporated in the certification process. In theorem proving
approaches, such as the one shown in this paper, certification is direct and emphatic. The result of a theorem proving activity for an aerospace
system is a proof, which can be checked independently as evidence that the aerospace system is correct with respect to the corresponding formal
properties. This is a promising feature, because it makes the final proof artifact independent of the advanced automation techniques that were used
in the original proof system to come up with the proof in the first place.

Acknowledgments

This material is based upon work partially supported by the National Science Foundation (NSF) under NSF CAREER Award CNS-1054246,
NSF EXPEDITIONCNS-0926181, NSFCNS-0931985, and CNS-1035800. It is also supported by the U.S. ArmyResearch Office under Award
no. W911NF-09-1-0273 and the Federal Aviation Administration under grant number DTFAWA-11-C-00074.

References

[1] Trimble, S., “AUVSI: RQ-7 Likely Not to Blame for C-130 Collision,” Flight Daily News, Aug. 2011.
[2] Johnson, C., “Review of the BFU Überlingen Accident Report,” Dept. of Computing Science, Univ. of Glasgow, Glasgow, Scotland, 2004, www.dcs.gla.ac

.uk/~johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF [retrieved Sept. 2014].
[3] Weiss, K. A., Dulac, N., Chiesi, S., Daouk, M., Zipkin, D., and Leveson, N., “Engineering Spacecraft Mission Software Using a Model-Based and Safety-

Driven Design Methodology,” Journal of Aerospace Computing, Information, and Communication, Vol. 3, No. 11, 2006, pp. 562–586.
doi:10.2514/1.24677

[4] Fix, L., “Fifteen Years of Formal Property Verification in Intel,” 25 Years ofModel Checking, edited by Grumberg, O., andVeith, H., Springer–Verlag, Berlin,
2008, pp. 139–144.

[5] Delmas, D., and Souyris, J., “Astrée: From Research to Industry,” Static Analysis: Lecture Notes in Computer Science, Vol. 4634, edited by Nielson, H., and
Filé, G., Springer–Verlag, Berlin, 2007, pp. 437–451.

[6] Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., and Rival, X., “Static Analysis and Verification of Aerospace Software by Abstract
Interpretation,” AIAA Infotech@Aerospace 2010, AIAA Paper 2010-3385, 2010.

GHORBAL ETAL. 711

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

www.dcs.gla.ac.uk/~johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF
www.dcs.gla.ac.uk/~johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF
www.dcs.gla.ac.uk/~johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF
www.dcs.gla.ac.uk/~johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF
www.dcs.gla.ac.uk/~johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF
www.dcs.gla.ac.uk/~johnson/Eurocontrol/Ueberlingen/Ueberlingen_Final_Report.PDF
http://dx.doi.org/10.2514/1.24677
http://dx.doi.org/10.2514/1.24677
http://dx.doi.org/10.2514/1.24677
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-540-74061-2_27
http://arc.aiaa.org/action/showLinks?system=10.2514%2F1.24677
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-540-69850-0_8

[7] Platzer, A., “Differential Dynamic Logic for Hybrid Systems,” Journal of Automated Reasoning, Vol. 41, No. 2, 2008, pp. 143–189.
doi:10.1007/s10817-008-9103-8

[8] Platzer, A., “Logics of Dynamical Systems,” Logic in Computer Science (LICS’12), IEEE, Piscataway, NJ, 2012, pp. 13–24.
[9] Platzer, A., and Clarke, E. M., “Computing Differential Invariants of Hybrid Systems As Fixedpoints,” Computer Assisted Verification: Lecture Notes in

Computer Science, Vol. 5123, edited by Gupta, A., and Malik, S., Springer–Verlag, Berlin, 2008, pp. 176–189.
[10] Henzinger, T. A., “The Theory of HybridAutomata,”Proceedings of the Eleventh Annual IEEE Symposiumon Logic in Computer Science, IEEE, Piscataway,

NJ, 1996, pp. 278–292.
[11] Platzer, A., Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics, Springer–Verlag, Heidelberg, 2010.
[12] Platzer, A., and Quesel, J.-D., “KeYmaera: A Hybrid Theorem Prover for Hybrid Systems,” Automated Reasoning: Lecture Notes in Computer Science,

Vol. 5195, edited by Armando, A., Baumgartner, P., and Dowek, G., Springer–Verlag, Berlin, 2008, pp. 171–178.
[13] Loos, S. M., Platzer, A., and Nistor, L., “Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified,” Formal Methods: Lecture Notes in

Computer Science, Vol. 6664, Springer–Verlag, Berlin, 2011, pp. 42–56.
[14] Loos, S.M., and Platzer, A., “Safe Intersections:At theCrossing ofHybrid Systems andVerification,” Intelligent Transportation Systems (ITSC’11), edited by

Yi, K., IEEE, Piscataway, NJ, 2011, pp. 1181–1186.
doi:10.1109/ITSC.2011.6083138

[15] Mitsch, S., Loos, S. M., and Platzer, A., “Towards Formal Verification of Freeway Traffic Control,” Proceedings of the 2nd International Conference on

Cyber-Physical Systems (ICCPS’12), edited by Lu, C., IEEE, Piscataway, NJ, 2012, pp. 171–180.
[16] Platzer, A., and Quesel, J.-D., “European Train Control System: A Case Study in Formal Verification,” Formal Engineering Methods: Lecture Notes in

Computer Science, Vol. 5885, edited by Breitman, K., and Cavalcanti, A., Springer–Verlag, Berlin, 2009, pp. 246–265.
[17] Platzer, A., and Clarke, E. M., “Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study,” Formal Methods: Lecture Notes in

Computer Science, Vol. 5850, edited by Cavalcanti, A., and Dams, D., Springer–Verlag, Berlin, 2009, pp. 547–562.
[18] Loos, S. M., Renshaw, D.W., and Platzer, A., “Formal Verification of Distributed Aircraft Controllers,” Proceedings of the 16th International Conference on

Hybrid Systems: Computation and Control (HSCC’13), edited by Belta, C., and Ivancic, F., ACM, Philadelphia, April 2013, pp. 125–130.
[19] Mitsch, S., Ghorbal, K., and Platzer, A., “On Provably Safe Obstacle Avoidance for Autonomous Robotic Ground Vehicles,” Robotics: Science and Systems

IX, edited by Newman, P., Fox, D., and Hsu, D., Technische Universität Berlin, Berlin, June 2013, http://www.roboticsproceedings.org/rss09/p14.pdf
[retrieved Sept. 2014].

[20] Kouskoulas, Y., Renshaw, D. W., Platzer, A., and Kazanzides, P., “Certifying the Safe Design of a Virtual Fixture Control Algorithm for a Surgical Robot,”
Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (HSCC’13), edited by Belta, C., and Ivancic, F., ACM,
Philadelphia, April 2013, pp. 263–272.

[21] Dubins, L. E., “On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents,”
American Journal of Mathematics, Vol. 79, No. 3, 1957, pp. 497–516.
doi:10.2307/2372560

[22] Bicchi, A., Marigo, A., Pappas, G., Pardini, M., Parlangeli, G., Tomlin, C., and Sastry, S., “Decentralized Air Traffic Management Systems: Performance and
Fault Tolerance,” Proceedings of the IFAC International Workshop on Motion Control (MC’98), The International Federation of Automatic Control, 1998,
pp. 259–264.

[23] Tomlin, C., Pappas, G. J., and Sastry, S., “Conflict Resolution for Air Traffic Management: A Study inMulti-Agent Hybrid Systems,” IEEE Transactions on

Automatic Control, Vol. 43, No. 4, 1998, pp. 509–521.
doi:10.1109/9.664154

[24] Platzer, A., “Differential-Algebraic Dynamic Logic for Differential-Algebraic Programs,” Journal of Logic and Computation, Vol. 20, No. 1, 2010, pp. 309–
352.
doi:10.1093/logcom/exn070

[25] Ghorbal, K., and Platzer, A., “CharacterizingAlgebraic Invariants byDifferential Radical Invariants,” Tools andAlgorithms for the Construction andAnalysis
of Systems: Lecture Notes in Computer Science, Vol. 8413, edited by Ábrahám, E., and Havelund, K., Springer–Verlag, Berlin, 2014, pp. 279–294.

[26] Platzer, A, “Stochastic Differential Dynamic Logic for Stochastic Hybrid Programs,” Automated Deduction: Lecture Notes in Computer Science, Vol. 6803,
edited by Bjørner, N., and Sofronie-Stokkermans, V., Springer–Verlag, Berlin, 2011, pp. 431–445.

[27] Kalman, R. E., “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, Vol. 82, No. 1, 1960, pp. 35–45.
doi:10.1115/1.3662552

[28] Kochenderfer, M. J., Holland, J. E., and Chryssanthacopoulos, J. P., “Next-Generation Airborne Collision Avoidance System,” Lincoln Laboratory Journal,
Vol. 19, No. 1, 2012, pp. 17–33, https://www.ll.mit.edu/publications/journal/pdf/vol19_no1/19_1_1_Kochenderfer.pdf [retrieved Sept. 2014].

[29] Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, Hoboken, NJ, 2009.
[30] von Essen, C., and Giannakopoulou, D., “Analyzing the Next Generation Airborne Collision Avoidance System,” Tools and Algorithms for the Construction

and Analysis of Systems: Lecture Notes in Computer Science, Vol. 8413, edited by Ábrahám, E., and Havelund, K., Springer–Verlag, Berlin, 2014, pp. 620–
635.

[31] Mitsch, S., and Platzer, A., “ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models,” Runtime Verification: Lecture Notes in
Computer Science, Vol. 8734, edited by Bonakdarpour, B., and Smolka, S. A., Springer–Verlag, Berlin, 2014, pp. 199–214.

[32] Bouissou, O., Goubault, E., Putot, S., Tekkal, K., and Vedrine, F., “HybridFluctuat: A Static Analyzer of Numerical Programs Within a Continuous
Environment,” Computer Aided Verification: Lecture Notes in Computer Science, Springer–Verlag, Berlin, 2009, pp. 620–626.

[33] Venet, A, “The Gauge Domain: Scalable Analysis of Linear Inequality Invariants,” Computer Aided Verification: Lecture Notes in Computer Science,
Vol. 7358, edited by Madhusudan, P., and Seshia, S., Springer–Verlag, Berlin, 2012, pp. 139–154.

[34] Bellman, R. E., Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1962.
[35] “Software Considerations in Airborne Systems and Equipment Certification,” RTCA STD DO-178C, Washington, D.C., 2012.
[36] Miller, S. P., Whalen, M. W., and Cofer, D. D., “Software Model Checking Takes Off,” Communications of the ACM, Vol. 53, No. 2, 2010, pp. 58–64.

doi:10.1145/1646353
[37] Souyris, J., Wiels, V., Delmas, D., and Delseny, H., “Formal Verification of Avionics Software Products,” Formal Methods: Lecture Notes in Computer

Science, Vol. 5850, edited by Cavalcanti, A., and Dams, D., Springer–Verlag, Berlin, 2009, pp. 532–546.
[38] Kuchar, J. K., and Yang, L. C., “A Review of Conflict Detection and Resolution Modeling Methods,” IEEE Transactions on Intelligent Transportation

Systems, Vol. 1, No. 4, 2000, pp. 179–189.
doi:10.1109/6979.898217

[39] Dowek, G., Muñoz, C., and Carreño, V. A., “Provably Safe Coordinated Strategy for Distributed Conflict Resolution,” 2005 AIAAGuidance Navigation, and

Control Conference and Exhibit, AIAA Paper 2005-6047, 2005.
[40] Galdino, A. L., Muñoz, C., and Ayala-Rincón, M., “Formal Verification of an Optimal Air Traffic Conflict Resolution and Recovery Algorithm,” Logic,

Language, Information and Computation: Lecture Notes in Computer Science, Vol. 4576, edited by Leivant, D., and de Queiroz, R., Springer–Verlag, Berlin,
2007, pp. 177–188.

[41] Platzer, A., and Clarke, E. M., “Computing Differential Invariants of Hybrid Systems As Fixedpoints,” Formal Methods in System Design, Vol. 35, No. 1,
2009, pp. 98–120.
doi:10.1007/s10703-009-0079-8

[42] Prandini, M., Hu, J., Lygeros, J., and Sastry, S., “A Probabilistic Approach to Aircraft Conflict Detection,” IEEE Transactions on Intelligent Transportation

Systems, Vol. 1, No. 4, 2000, pp. 199–220.
doi:10.1109/6979.898224

712 GHORBAL ETAL.

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1109/ITSC.2011.6083138
http://dx.doi.org/10.1109/ITSC.2011.6083138
http://dx.doi.org/10.1109/ITSC.2011.6083138
http://dx.doi.org/10.1109/ITSC.2011.6083138
http://www.roboticsproceedings.org/rss09/p14.pdf
http://www.roboticsproceedings.org/rss09/p14.pdf
http://www.roboticsproceedings.org/rss09/p14.pdf
http://www.roboticsproceedings.org/rss09/p14.pdf
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1109/9.664154
http://dx.doi.org/10.1109/9.664154
http://dx.doi.org/10.1109/9.664154
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1093/logcom/exn070
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
https://www.ll.mit.edu/publications/journal/pdf/vol19_no1/19_1_1_Kochenderfer.pdf
https://www.ll.mit.edu/publications/journal/pdf/vol19_no1/19_1_1_Kochenderfer.pdf
https://www.ll.mit.edu/publications/journal/pdf/vol19_no1/19_1_1_Kochenderfer.pdf
https://www.ll.mit.edu/publications/journal/pdf/vol19_no1/19_1_1_Kochenderfer.pdf
https://www.ll.mit.edu/publications/journal/pdf/vol19_no1/19_1_1_Kochenderfer.pdf
http://dx.doi.org/10.1145/1646353
http://dx.doi.org/10.1145/1646353
http://dx.doi.org/10.1109/6979.898217
http://dx.doi.org/10.1109/6979.898217
http://dx.doi.org/10.1109/6979.898217
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1007/s10703-009-0079-8
http://dx.doi.org/10.1109/6979.898224
http://dx.doi.org/10.1109/6979.898224
http://dx.doi.org/10.1109/6979.898224
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-54862-8_54
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2FICCPS.2012.25
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2F9.664154
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-540-71070-7_15
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2F6979.898217
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2F6979.898224
http://arc.aiaa.org/action/showLinks?crossref=10.1115%2F1.3662552
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-540-70545-1_17
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-319-11164-3_17
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-10373-5_13
http://arc.aiaa.org/action/showLinks?crossref=10.1145%2F2461328.2461369
http://arc.aiaa.org/action/showLinks?crossref=10.1093%2Flogcom%2Fexn070
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-21437-0_6
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-02658-4_46
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-05089-3_35
http://arc.aiaa.org/action/showLinks?crossref=10.2307%2F2372560
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2FLICS.1996.561342
http://arc.aiaa.org/action/showLinks?crossref=10.1145%2F1646353.1646372
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-540-73445-1_13
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-54862-8_19
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2Fs10817-008-9103-8
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2FITSC.2011.6083138
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-31424-7_15
http://arc.aiaa.org/action/showLinks?crossref=10.1145%2F2461328.2461350
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-14509-4
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-05089-3_34
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2Fs10703-009-0079-8
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-22438-6_34
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2FLICS.2012.13

[43] Lygeros, J., and Prandini, M., “Aircraft and Weather Models for Probabilistic Collision Avoidance in Air Traffic Control,” Proceedings of the 41st IEEE
Conference on Decision and Control, Vol. 3, IEEE, Piscataway, NJ, 2002, pp. 2427–2432.

[44] Lachner, R., “CollisionAvoidance as a Differential Game: Real-Time Approximation of Optimal Strategies Using Higher Derivatives of the Value Function,”
IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, 1997, Vol. 3, IEEE, Piscataway, NJ,
1997, pp. 2308–2313.

[45] Bilimoria, K. D., Lee, H. Q., Mao, Z.-H., and Feron, E., “Comparison of Centralized and Decentralized Conflict Resolution Strategies for Multiple-Aircraft
Problems,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2000-4268, 2000.

[46] Hwang, I., and Tomlin, C., “Protocol-Based Conflict Resolution for Air Traffic Control,” Air Traffic Control Quarterly, Vol. 15, No. 1, 2007, pp. 1–34.
[47] Mitchell, I.M., Bayen,A.M., and Tomlin, C. J., “ATime-Dependent Hamilton-Jacobi Formulation of Reachable Sets for ContinuousDynamicGames,” IEEE

Transactions on Automatic Control, Vol. 50, No. 7, 2005, pp. 947–957.
doi:10.1109/TAC.2005.851439

[48] Frehse, G., Guernic, C. L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., and Maler, O., “SpaceEx: Scalable Verification of
Hybrid Systems,” Computer Aided Verification: Lecture Notes in Computer Science, Vol. 6806, edited by Gopalakrishnan, G., and Qadeer, S., Springer–
Verlag, Berlin, 2011, pp. 379–395.

[49] Umeno, S., and Lynch, N. A., “Proving Safety Properties of an Aircraft Landing Protocol Using I/OAutomata and the PVS Theorem Prover: ACase Study,”
FormalMethods: LectureNotes inComputer Science, Vol. 4085, edited byMisra, J.,Nipkow, T., andSekerinski, E., Springer–Verlag,Berlin, 2006, pp. 64–80.

[50] Umeno, S., and Lynch, N. A., “Safety Verification of an Aircraft Landing Protocol: A Refinement Approach,” Hybrid Systems: Computation, and Control:
Lecture Notes in Computer Science, Vol. 4416, edited by Bemporad, A., Bicchi, A., and Buttazzo, G., Springer–Verlag, Berlin, 2007, pp. 557–572.

[51] Bayen,A.M.,Mitchell, I.M., Osihi,M.K., andTomlin,C. J., “AircraftAutolander SafetyAnalysis ThroughOptimal Control-BasedReach SetComputation,”
Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 68–77.
doi:10.2514/1.21562

M. Davies
Associate Editor

GHORBAL ETAL. 713

D
ow

nl
oa

de
d

by
 C

A
R

N
E

G
IE

 M
E

L
L

O
N

 U
N

IV
E

R
SI

T
Y

 o
n

D
ec

em
be

r
30

, 2
01

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
01

78

http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.1109/TAC.2005.851439
http://dx.doi.org/10.2514/1.21562
http://dx.doi.org/10.2514/1.21562
http://dx.doi.org/10.2514/1.21562
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F11813040_5
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-540-71493-4_43
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2FCDC.2002.1184199
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2FTAC.2005.851439
http://arc.aiaa.org/action/showLinks?system=10.2514%2F1.21562
http://arc.aiaa.org/action/showLinks?crossref=10.1109%2FICSMC.1997.635270
http://arc.aiaa.org/action/showLinks?crossref=10.1007%2F978-3-642-22110-1_30

