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Summary of lecture 2

Index Reduction

• Given a DAE F (x , ẋ , t), we have seen how to perform a structural
analysis to numerically compute ẋ function of x . The structural
nonsingularity ensures that, generically, one can perform the
computation following the block order suggested by the BLT
decomposition. Thus, one is able to compute the numerical values of
the derivatives given a consistent state of the system and carry on
with a standard numerical integration.

• Note: the structural index is not always equal to the differentiation
index.

K. Ghorbal (INRIA) 2 CPS M2 2 / 16



Semi-Explicit DAE

Index reduction transforms a fully implicit DAE to a semi-explicit DAE

ẋ = f (x , y , t)
0 = g(x , y , t)

Integration Schemes

• Backward Differentiation Formula (BDF)

• Orthogonal Collocation
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Outline

1 BDF Method

2 Collocation (Overview)
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Backward Differentiation Formula (BDF)
Fixed Step Size

• Implicit: next value not explicitly given.
• Linear multistep: the next value is linearly related to the immediate
previous (backward) values (eventually more than one).

• For a fixed step size δ > 0, let tn = t0 + nδ, and xs the approximate
of the exact x(ts).

• The general Backward Differentiation Formula:

ẋn = linear combination of xn, xn−1, . . . , x0

• For a Cauchy problem ẋ = f (x , t), x(t0) = x0, one obtains an implicit
equation for xn:

xn =

q∑
n=1

an x1−n + δ bq f (xn, tn)

where the an and bq depends only on the order q.
• E.g., q = 1 (BDF1): xn = xn−1 + δ f (xn, tn) (a.k.a. Backward

Euler)
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Coefficients of BDFq
Taylor Series (Sundials Implementation)

Ixn = xn (Identity)
N xn = xn+1 (Forward Shift)
N−1xn = xn−1 (Backward Shift)
Dxn = ẋn (Differential)
∆ = I −N−1 (Backward Operator)

Observe that N = (I −∆)−1 (Operator Algebra)

N xn = xn+1 = xn + δDxn +
δ2

2!
D2xn +

δ3

3!
D3xn + · · ·

= (I + δD +
δ2

2!
D2 +

δ3

3!
D3xn + · · · )xn

= eδDxn

Thus: N = eδD
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δD = ln(N ) = ln
(
(I −∆)−1

)
= ∆+

1

2
∆2 +

1

3
∆3 + · · ·

δẋn = δDxn = ∆xn +
1

2
∆2xn +

1

3
∆3xn + · · ·

BDFq: truncate at order q, for instance for q = 2

δẋn = ∆xn +
1

2
∆2xn = (xn − xn−1) +

1

2
(xn − 2xn−1 + xn−2)

Thus

δẋn =
3

2
xn − 2xn−1 +

1

2
xn−2

xn =
4

3
xn−1 −

1

3
xn−2 +

2

3
δf (xn, tn)

K. Ghorbal (INRIA) 6 CPS M2 6 / 16



BDF for Semi-Explicit DAE of index 1

ẋ = f (x , y , t)

0 = g(x , y)

Numerical integration using the BDF2 Scheme

Suppose xn−1 and xn−2 are known, xn and yn are computed by numerically
solving the following system (e.g. Newton’s methods) at each iteration:

xn =
4

3
xn−1 −

1

3
xn−2 +

2

3
δf (xn, yn, tn)

0 = g(xn, yn)

• BDF converges if m ≤ 6: xi − x(ti ) = yi − yi (ti ) = o(δm)

• BDF requires a consistent initial condition

K. Ghorbal (INRIA) 7 CPS M2 7 / 16



Newton’s Methods: Generalization

Could be used to numerically approximate the roots of F : Rk → Rk

(Fi continuously differentiable functions):

• Multiply by the inverse of the Jacobian

xn+1 = xn − J−1
F (xn)F (xn)

• Or solve the system of linear equations

JF (xn)(xn+1 − xn) = −F (xn)

Under some assumptions, the method converges quadratically towards a
root of F .

K. Ghorbal (INRIA) 8 CPS M2 8 / 16



Outline

1 BDF Method

2 Collocation (Overview)
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Collocation

• Collocate means approximate/study an unknown function by means
of other“simpler” functions

• For instance using polynomial or trigonometric functions

Weierstrass Theorem (1885)

If x(t) is a continuous function on [a, b], then for any given ϵ > 0, there
exists a polynomial p(t) such that

max
t∈[a,b]

|x(t)− p(t)| < ϵ

The theorem has a constructive proof using Bernstein polynomials.

Integration by Collocation

Unlike BDF, Collocation could be used to construct at once n points
(t1, x1), . . . , (tn, xn) such that xi approximates the function x(t) at ti for
all i . Useful for Consistent Initialization.
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Collocation: main idea

If p(t) is a polynomial that approximates x(t), solution of our semi-explicit
DAE, such that p(ti ) = x(ti ) = xi for some known ti , where i = 1, . . . , n.
Then, for each i , we can compute xi , yi by solving

ṗ(ti ) = f (p(ti ), yi , ti )

0 = g(p(ti ), yi )

• The collocation methods attempts to construct such p as well as
finding appropriate ti .

• Observe that the polynomial p may be dependent on xi , the
unknowns we want to determine.

• Again, Newton’s methods could be used to solve iteratively for p(ti )
and hence xi .
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Polynomial Interpolation

Suppose we have n points (t1, x1), . . . , (tn, xn), then we construct the
polynomial p(t) such that:

p(ti ) = xi , i = 1, . . . , n

• There exists a (unique) polynomial p of degree n interpolating the n
points

p(t) =
n∑

i=1

xiLi (t)

• Li are the Lagrange polynomials

Li (t) =
n∏

k=0,k ̸=i

t − tk
ti − tk

, i = 1, . . . , n

satisfying in particular Li (tj) = δij (Kronecker delta)
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Determining the instant (nodes) ti

We want to determine the instants ti ∈ [a, b] such that there exists
positive weights wi which make the Gauss quadrature integral exact for
the polynomial p, that is

I[p] =

∫ b

a
p(t)dt =

n∑
i=1

wip(ti ) = Qn[p]

Without loss of generality, we can suppose that a = −1 and b = 1 since∫ b

a
f (t)dt =

b − a

2

∫ 1

−1
f

(
a+ b

2
+ t

b − a

2

)
dt .

Gauss Quadrature Fundamental Theorem (w(x) = 1)

If the ti are the zeros of the Legendre polynomial ℓn, then there exist n
weights wi which make the Gauss quadrature integral exact for all
polynomials of degree 2n − 1 or less (in particular for our polynomial p of
degree n).
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Legendre Polynomials

Rodrigues’ Formula

ℓn(t) =
1

2nn!

dn

dtn
(t2 − 1)n

• ℓn has degree n

• Legendre polynomials are orthogonal

< ℓi , ℓj >=

∫ 1

−1
ℓi (t) ℓj(t)dt =

2

2n + 1
δij

• ℓ0(t) = 1, ℓ1(t) = t, ℓ3(t) =
1
2(5t

3 − 3t)

• There are effective methods to compute the zeros of ℓn and wi

(Golub-Welsch algorithm)

• Thus we have the ti which depend only on n and not on our
original DAE system !.
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Example (1/2)

ẋ = x + y

0 = x2 + y2 − 1

• Suppose [a, b] = [0, 0.1], n = 3

• The ti are derived from τi the roots of ℓ3(t): ti =
a+b
2 + τi

b−a
2

• τi ∈
{
−
√

3
5 , 0,

√
3
5

}
• wi =

∫ b
a Li (t)dt (Lagrange Polynomials)

• wi ∈ { 1
36 ,

2
45 ,

1
36}

• p(t) = x1L1(t) + x2L2(t) + x3L3(t)

• ṗ(t) = x1L̇1(t) + x2L̇2(t) + x3L̇3(t) (L̇i (tj) ̸= δij)
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Example (2/2)

System to Solve

ṗ(t1) = x1 + y1
ṗ(t2) = x2 + y2
ṗ(t3) = x3 + y3
0 = x21 + y21 − 1
0 = x22 + y22 − 1
0 = x23 + y23 − 1

One solution for [0, 0.1]: x1 = x2 = x3 =
1√
2

y1 = y2 = y3 =
−1√
2

Note that in this particular simple example, the system has a singularity at
(x , y) = (1, 0), so not all initial conditions and intervals [a, b] work. In
general, such problems occur and one wants to find an initial condition
that has no singularities at least as long as t ∈ [a, b].
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