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Summary lecture 1

1 Ordinary Differential Equations:
• Cauchy-Lipschitz theorem: existence and uniqueness of solutions
• Liouville theorem: no closed form solutions in general
• Numerical integration: convergence and stability
• Qualitative analysis: invariant regions

2 Differential-Algebraic Equations
• Informal Introduction
• Examples
• Different Forms
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Partial Solving of Implicit Systems

Problem
Knowing (the state) X , we would like to find Y sich that F (X ,Y ) = 0.

Implicit Function Theorem

Let F (X ,Y ): n equations, where |Y | = n, |X | = m.
If (u, v) ∈ Rm+n is such that F (u, v) = 0 and J = ∂F

∂Y is nonsingular at
(u, v), then there exists, in an open neighborhood U pf u, a unique set of
functions G such that v = G (u) and F (w ,G (w)) = 0 for all w ∈ U.

Structural Analysis

How to solve the scalability problem for large systems? At which cost?
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Outline

1 Matching Problem

2 BLT Decomposition

3 Pantelides Algorithm
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Structural Analysis of Systems of Equations: Example

Consider the following system of equations:
f1(x1) = 0
f2(x1, x2, x3) = 0
f3(x3) = 0

Incidence Matrix


x1 x2 x3

f1 1 0 0
f2 1 1 1
f3 0 0 1


Bipartite Graph (Bigraph)

f1

f2

f3

x1

x2

x3
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Bigraphs and Matching

Bipartite graph (F ,V ,E )

• F : set of equations

• V : set of variables (disjoint with F )

• E : subset of the cartesian product F × V

Example: a triangle is not a bipartite graph.

Matching Problem

Given a bipartite graph (F ,V ,E ), assign one and only one equation f ∈ F
to each variable v ∈ V such that (f , v) ∈ E .
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Matching Problem: Intuitions

Algorithm

For each equation, pick up its first unmatched variable. The procedure
succeeds whenever all variables are matched.

Matching

f1

f2

f3

x1

x2

x3

Backtrack (f2, x3)

f1

f2

f3

x1

x3

x2
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Matching Problem: Intuitions

Algorithm (incomplete/wrong)

For each equation, pick up its first unmatched variable. The procedure
succeeds whenever all variables are matched.

Matching
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Matching Problem: Algorithm

Let G : (V ,E ) denote a graph

• Matching: A matching is a set of pairwise non-adjacent edges.

• Maximum Matching: A matching having the maximum cardinality,
denoted ν(G ).

• Perfect Matching: A matching such that every vertex of the graph
is incident to exactly one edge of the matching.

Proposition G has a perfect matching if and only if |G | = 2ν(G ).
➻ For systems of n variables and n equations: (1) compute ν(G ), (2)
check if ν(G ) = n.
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Hopcroft-Karp Algorithm (1973)

• Input: bipartite graph (U,V ,E )

• Output: maximum cardinality matching

• Complexity: (worst case) O(|E |
√

|V |)

Augmented Shortest Path

At each phase:

• BFS: alternate between U and V where one starts from an unmatched
variable in U and reaches an unmatched variable in V while following
a matched edge from V to U (this gives an augmented shortest path).

• DFS: selects one shortest path out of the many selected ones by the
BFS.

• update the matching set
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Example
Source: Wikipedia
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Maximum Transversal Problem

Matching

f1

f2

f3

x1

x3

x2

Maximum Transversal Problem
Finding a permutation that
places a maximum number of
non-zero on the diagonal of a
sparse matrix.

Incidence Matrix


x1 x2 x3

f1 1 0 0

f2 1 1 1

f3 0 0 1




x1 x3 x2

f1 1 − −
f3 0 1 −
f2 1 1 1



❥ Very useful prior to decomposing the matrix using Gaussian elimination.
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Outline

1 Matching Problem

2 BLT Decomposition

3 Pantelides Algorithm
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Block-Lower-Triangular (BLT) Form

Goal: Given a square matrix M (mij ∈ {0, 1}), find a permutation to put
M in a block lower triangular form.


x1 x2 x3 x4

f1 1 0 1 0
f2 1 1 0 1
f3 0 1 0 0
f4 1 1 1 0




x2 x1 x3 x4

f3 1 0 0 0
f1 0 1 1 0
f4 1 1 1 0
f2 1 1 0 1
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BLT Decomposition

Blocks of dimension > 1 (called algebraic loops) are (numerically) solved
by Gaussian elimination if linear or Newton methods if nonlinear.

Three main steps

1 Find a (perfect) matching

2 Construct a dependency graph

3 Find strongly connected components (Tarjan’s algorithm)

K. Ghorbal (INRIA) 12 CPS M2 12 / 25



BLT Decomposition: Example
Perfect Matching

Bipartite Graph (Bigraph)

f1

f2

f3

f4

x1

x2

x3

x4

Incidence Matrix


x1 x2 x3 x4

f1 1 0 1 0

f2 1 1 0 1

f3 0 1 0 0

f4 1 1 1 0
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BLT Decomposition: Example
Dependency Graph

Incidence Matrix


x1 x2 x3 x4

f1 1 0 1 0

f2 1 1 0 1

f3 0 1 0 0

f4 1 1 1 0



Dependency Graph

f1

f2f4

f3
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BLT Decomposition: Example
Strongly Connected Components

Dependency Graph

f1

f2f4

f3

1

2

3

BLT Decomposition


x2 x1 x3 x4

f3 1 0 0 0
f1 0 1 1 0
f4 1 1 1 0
f2 1 1 0 1
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Strongly Connected Components (SCC)

Definitions

• A directed graph is strongly connected if every vertex is reachable
from every other vertex.

• Strongly connected components of a directed graph form a
partition into subgraphs which are themselves strongly connected.

• By contracting each strongly connected component into one vertex,
one obtains a condensation of the original graph into a directed
acyclic graph.

Tarjan’s Algorithm (1972)

• One depth-first search (vs. 2 for Kosaraju’s algorithm (1978))

• Simple and elegant data structure

• Complexity: O(|V |+ |E |)
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Structural Analysis

Structural NonSingularity

A square matrix is said to be structurally nonsingular if it remains almost
everywhere nonsingular when its nonzero coefficients vary over some
neighborhood.

Relation to the BLT Decomposition

The Jacobian J = ∂F
∂Y is structurally nonsingular if and only if GF (the

incidence graph related to F ) can be decomposed in a BLT form.
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Outline

1 Matching Problem

2 BLT Decomposition

3 Pantelides Algorithm
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Differential Algebraic Equations

General Form

F (x , ẋ , y , t) = 0

• state variables: x ∈ Rn

• algebraic variables: y ∈ Rm

• F : G ⊂ Rn × Rn × Rm × R → Rm+n

Index
The index of an DAE is the minimum number of times that all or part of
the DAE must be differentiated with respect to time (t) in order to
determine ẋ as a continuous function of x and t.

(Brenan, Campbell 1996)
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Example: Pendulum
Structural Analysis

(Photo source: Wolfram)

System of Equations

f1 : ẋ = u
f2 : ẏ = v
f3 : u̇ = −λx
f4 : v̇ = −λy − g
f5 : 0 = L2 − x2 − y2

Incidence Matrix



ẋ ẏ u̇ v̇ λ

f1 1 0 0 0 0
f2 0 1 0 0 0
f3 0 0 1 0 1
f4 0 0 0 1 1
f5 0 0 0 0 0



No perfect matching
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f1 : ẋ = u
f2 : ẏ = v
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Example: Pendulum
Exhibiting Latent Equations

Suppose a consistent initialization

• f5 is not used

• f5 holds for all t, then ḟ5 has to hold for all t

• ḟ5 : 2xẋ + 2y ẏ = 0 (symbolic differentiation)

Incidence Matrix



ẋ ẏ u̇ v̇ λ

f1 1 0 0 0 0
f2 0 1 0 0 0
f3 0 0 1 0 1
f4 0 0 0 1 1
ḟ5 1 1 0 0 0



Still no matching !

Bipartite Graph

f1

f2

f3

f4

ḟ5

ẋ

ẏ

u̇

v̇

λ
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Example: Pendulum
Higher Indices

Incidence Matrix



ẋ ẏ u̇ v̇ λ ẍ ÿ

f1 1 0 0 0 0 0 0
f2 0 1 0 0 0 0 0
f3 0 0 1 0 1 0 0
f4 0 0 0 1 1 0 0
f̈5 1 1 0 0 0 1 1
ḟ1 0 0 1 0 0 1 0
ḟ2 0 0 0 1 0 0 1


Matching Successful!

Bipartite Graph

f1

f2

f3

f4

f̈5

ḟ1

ḟ2

ẋ

ẏ

u̇

v̇

λ

ẍ

ÿ
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Pantelides Algorithm

Pantelides algorithm (1988) attempts to decompose the function F of a
given DAE into a BLT form by exhibiting latent equations.

• First structural analysis of DAE

• Not guaranteed to terminate

• Applies only to first-order systems

• May overestimate the differential index

• Other methods: Signature (Σ) method, J. D. Pryce (2001)

K. Ghorbal (INRIA) 22 CPS M2 22 / 25



Structural Analysis (Complement)

Consider the following DAE

ż − ẋy − xẏ + 2x + y − 3 = 0
z − xy = 0
x + y − 2 = 0

• Pantelides: structural index 1

• Differentiation index is 0 (simple linear system)

• (Hidden) Cancellation problems are undecidable in general
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To summarize

Index Reduction

• Given a DAE F (x , ẋ , t), we have seen how to perform a structural
analysis to numerically compute ẋ function of x . The structural
nonsingularity ensures that, generically, one can perform the
computation following the block order suggested by the BLT
decomposition. Thus, one is able to compute the numerical values of
the derivatives given a consistent state of the system and carry on
with a standard numerical integration.

• Note: the structural index is not always equal to the differentiation
index (see the first reference below for concrete examples).
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