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Basics

¥ k denotes an algebraically closed beld.
¥ Kk[X] = Kk[X1,...,Xp]: the ring of polynomials ovek
¥ | =(f,...,fs) ! K[X] ideal generated by thd;
I #
ns

L= f" KIX]|#1,...,0s" K[X], = 14fi

$_
¥ The Radical of |, denoted 1, is an ideal ofk[X] debned as follows.

$_
= {f " KX]|#m" N.f™" 1}

Hilbert Basis Theorem
Every ideal ok[X] is Pnitely generated.

K. Ghorbal (INRIA) 2 COMASIC M2 2124



Varieties and Vanishing Ides
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Monomial Orders

¥ A monomial is an element d&[X] of the form Xi LaaX4, .
¥ Notation: X', " :==("1,...,"n) " N".

DebpPnition:Monomial Order
Total order on the set of monomials satisfying:

@ Forall#" N", X' < X" impliesX' X# < X" X#,
® Forall" " N", X! > 1, so 1 is the minimal element.

K. Ghorbal (INRIA) 4 COMASIC M2 4]24



Monomial Orders

¥ A monomial is an element d[X] of the form Xi LaaX4, .
¥ Notation: X', " :=("1,...,"n) " N".

DePnition:Monomial Order
Total order on the set of monomials satisfying:

@ Forall#" N", X' < X" impliesX' X# < X" X#,
® Forall" " N", X! > 1, so 1 is the minimal element.

Example: Lex Ordering

Extends the lexicographic orderinky > X, > aaa X, as follows:
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Leading Terms, Monomials and Cazents
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Division / Reduction

Theorem
Given non zero polynomiafs f1,...,fs " k[X] and a monomial ordering

K. Ghorbal (INRIA) COMASIC M2 6/24



Division / Reduction

Theorem
Given non zero polynomiafs f1,...,fs " k[X] and a monomial ordering
(>), there existsr,qz,...,0s " K[X] such that

¥f=(C 1gf)+r
¥ No term inr is divisible by any LTf{)
¥ LT(f) = maxs {LT(q)LT(f;) | g =0}

inBy
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Gmbner Bases

¥ LT(
¥ X >
¥ (LT
¥ fa(
¥ LT
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Grmbner Bases

In words: The leading terms ideal @ is generated by the leading terms
of the generators ofG.
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Reduced @Gbner Basis

G=(091,---,9m) is reduced if for everyi =1,...,m, LC(g;) =1 and
LT(gi) does not divide any term of ang;, j = i.

Example

¥ G=(X+ Y?2,Y)is anon reduced Gbner basis.
¥ (X,Y) is a reduced Gabner basis.

Theorem
Every ideal has a unique reducedeBner Basis representation (up to the
bPxed monomial order).
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Nullstellensatz
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Nullstellensatz

k is algebraically closed.
Theorem:HilbertOs Nullstellensatz
¥ Strong | (V(1)) = $T
¥ Weak V(I) =) if and only if 1" |

Corollaries: Solvability and @mer Bases

| is an ideal ok[X]. The following statements are equivalent:
¥ | = K[X]
¥ 171
¥ V() =)
¥ | has a Gebner Basis having nonconstant polynomials
¥ The reduced Gabner Basis of is di' erent from{1}
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Finiteness Theoren

The Finiteness Theorem
Let | be an ideal ok[X]. The following statements are equivalent.

¥ V(1) is Pnite (Pnite set of points ik")

¥ k[X]/I is a Pnite-dimensional vector space oker

¥ Only a bnite number of monomials are not in LJ(
In addition dim k[X]/ 1 gives exactly the number of solutions (counted
with their multiplicities) of the system debned hy
Example

¥ 1 =(X%2+1)

¥ k[X]/1 is isomorphic, as a vector space, k3: elements ok[X]/| are
of the forma+ bX wherea, b" k

¥ Whenk is algebraically closed? + 1 has two roots since it is of
degree 2
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Computational Aspect:

¥ Grabner Bases are akin to Standard Bases by Hironaka (1964).

¥ The name Gabner was introduced by Buchberger in his thesis (196
where he gives a procedure to compute such bases.

¥ The coé cients of the intermediate (S) polynomials computed while
generating a basis could be very large, likewise their polynomial
degrees can be as large a%if one starts with polynomials of degree
n.

¥ The fastest known implementation if FougereOs F4 and F5 packag
(available in Maple), they are however limited in the sizeXofand the
total degrees of thd;.

¥ Almost all computer algebra systems have an implementation the
Buchberger algorithm (possibly with ‘terent optimizations and
heuristics).
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Practical Applications

This classical correspondence between Algebra and Geometry, together
with the existence of procedures to computeeBner Bases in many
practically relevant cases have many applications:

¥ Solvability of a system of polynomial equations
¥ Finite solutions test

¥ |deal membership test

¥ Polynomial reduction (division)

¥ Elimination theory (next section)

K. Ghorbal (INRIA) 12 COMASIC M2 12/ 24



Outline

@® Applications (Elimination Theory)
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Elimination Theorem

¥ k[X,Y] = k[X]_,...,XS,Ys+]_,...,Yn]
¥ A monomial ink[X, Y] has the formX' Y #
¥ Let| be an ideal ok[X,Y]

Elimination Order

A monomial orderinggliminatesX if X! > X" impliesX' Y# > X"Y$ for
everyY# and Y ®. (For instance, the lex monomial ordering is an
elimination order.)
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Elimination Order

A monomial orderinggliminatesX if X! > X" impliesX' Y# > X"Y$ for
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elimination order.)
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| * k[Y] is the elimination idealof | that eliminatesX.
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Elimination Theorem

¥ K[X,Y]= K[X1, ..., Xs, Yer1s- -, Yn]
¥ A monomial ink[X, Y] has the formX' Y #
¥ Let| be an ideal ok[X,Y]

Elimination Order

A monomial orderinggliminatesX if X! > X" impliesX' Y# > X"Y$ for
everyY# and Y ®. (For instance, the lex monomial ordering is an
elimination order.)

Elimination Ideal
| * k[Y] is the elimination idealof | that eliminatesX.

Elimination Theorem

Let G be a Gebner basis of for a monomial order %) that eliminatesX.
Then G * k[Y] is a Gebner Basis of the elimination ide&l k[Y ] for the
monomial order ork[Y ] induced by ¢).
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Partial Solutions and Projection

Given the coordinatexy, ..., Xs,Ys+1:---,Yn, let
% : A"+ AM S
denote the projection onto the lagt ( s coordinates.

Variety of Partial Solutions

%(V(), V(I K[Y]) .

Moreover,V(I * k[Y]) is the Zariski Closure of the projection, that is the
smallest variety containing the se¥a(V(l)).
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Partial Solutions and Projection

Given the coordinatexy, ..., Xs,Ys+1:---,Yn, let
% : A"+ AM S

denote the projection onto the lagt ( s coordinates.

Variety of Partial Solutions

%(V(1), V(I *K[Y]) .
Moreover,V(I * k[Y]) is the Zariski Closure of the projection, that is the
smallest variety containing the se¥a(V(l)).

Example

I = (XY ( 1,Z( Y), with respect to the lex orderX > Y > Z), the
generator ofl form a Gebner Basis. Thus * K[Y,Z]=(Z ( Y). So
(y,z)=(0,0)isinV(l * K[Y]) but not in %(V(l)).
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Solving by Triangulatior

¥ fl,...,fs“ k[xl,,Xn]

¥ Use the lex ordeX; > daa X, which is an elimination order for
eachX;

¥ Compute a Gebner BasisG with respect to that order

¥ Then G * k[Xp] is a principal ideal, thus one gets a univariate
polynomial inX, to solve

¥ Now computeG * K[Xn 1, Xn], knowing theXp, this gives a
univariate polynomial irX,, ; alone

¥ Keep iterating till solving the entire system
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Example

OrderX > Y > Z.
Original System

Grebner Basis

= X+Y+Z2(1
@=Y2(Y(2Z%+Z
93 =2YZ2+ Z24( 22
gs= 28( 4z%+423( 72

fi=X?+Y+2Z(1
f= X+Y2+2Z(1
fa= X+Y+2%2(1

Elimination ldeals

l1= G* K[Z]=(04)
lo=G* K[Y,Z]= (092, 03, 04)
l3=G* K[X,Y,Z]=(01,02,03,04)

K. Ghorbal (INRIA) 16 COMASIC M2 16/ 24



Outline

® Algebraic Characterization of Invariant Varieties
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Debnitions

Given a polynomial ordinary ‘terential equatiornti= f(x).
Initial Value Problem
) *

x(t),t " U solution of the Cauchy problem d)és[t) = f(x),Xx(0) = Xq

Orbit
Oy = {X(t) |t " U} = {x" R"|#t " R,x= &(xo)} ! R"
Invariant Region S! R"
%Wo" S,% " U, x(t)" S
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Algebraic Invariant Equation

((xa ( 2%z, ( %2),
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=0

P(X1, X2) = (%:(0)! x1(0):(0) )X ( x1(0) (X2 ( X1X3)

18/ 24
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More DePnitions

Gradient
) . *
p= PP
' "xiTT " X
Lie Derivation
dp(x(t , ,
Di(p) = PED = par a= )

Closure (Zariski Topology)

®Xo = V(I (OXO))
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Properties of the Zariski Closul

Proposition1: Dimension and Integrability
Oy, ! @,

Proposition2: Stability under Lie derivation
I (O(xo)) is a (proper)di! erential idealfor D¢, that is, D¢(p) " | (O(Xo))
forallp™ 1 (O(xo))

Example: Zariski Dense Varieties
Xi=x! O(xg)=[0,. [! 1=/00! @&, = V(I (O(x))= R
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Characterizing Elements b{O(Xo))

DePnition: Di" erential Order
The di! erential orderof p " R[x] denotes the length of the chain of ideals

+ H
/Ip0!/ p,Di(p)0! a4k p,Ds(p),....DM" Y(p) = 'p.

Np = card(’ p) (< . sinceR is Notherian).
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Characterizing Elements b{O(Xo))

Theorem _
The polynomialp is in 1 (O(xo)) if and only if D{” (p)(xo) = 0, for all
i=0,...,Np( 1.
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Characterizing Elements b{O(Xo))

Theorem _
The polynomialp is in 1 (O(xo)) if and only if D{” (p)(xo) = 0, for all
i=0,...,Np( 1.

Proof Sketch

1 : Sincex(t) is analytic, p(x(t)) is also analytic. Thus for a nonempty
open neighborhood ! U around 0, the null Taylor series qf(t) is equal
to p, thusp =0 for all U.
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Corollaries

Corollaryl

An algebraic set/(/p0 is invariant forf if and only if
"p! (V(/pO) .

Corollary2

For eachxg, there exists a unique (up to multiplication by a constant and
rearrangement of its factorsp " R[X] such that

"p=1(0(x0)) .
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Decidability:! p! 1 (V(/p0)

Givenf andp " R[x], the invariance ofV(/p0 is decidable.

Di(p)=!p (" " R[x])
V (/p0 is an invariant algebraic set

¥ Existence of . Grebner Basis
¥p=0+ Dg')(p) = 0: (Universal) Quantiber Elimination
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Decidability:! p! 1 (V(/p0)

Givenf andp " R[x], the invariance ofV(/p0 is decidable.

D@ (p)= 1op+ 11D¢(p) (! " RIx]) & p=0 + D¢(p)=0

V (/p0 is an invariant algebraic set

¥ Existence of . Grebner Basis
¥p=0+ Dg')(p) = 0: (Universal) Quantiber Elimination
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Decidability:! p! 1 (V(/p0)

Givenf andp " R[x], the invariance ofV(/p0 is decidable.

D (p) = ( 2,'DPmE (R & p=0+ 2, DPY(p)=0

V (/p0 is an invariant algebraic set

¥ Existence of . Grebner Basis
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Decidability:! p! 1 (V(/p0)
Givenf andp " R[x], the invariance ofV(/p0 is decidable.

DM™(p)y= { M 11 DO () (1 R) & p=0+ M DM (p)=0

V (/p0 is an invariant algebraic set

¥ Existence of . Grebner Basis
¥p=0+ Dg')(p) = 0: (Universal) Quantiber Elimination
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