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Basics

¥ k denotes an algebraically closed Þeld.

¥ k[X ] = k[X1, . . . , Xn]: the ring of polynomials overk

¥ I = ( f1, . . . , fs) ! k[X ] ideal generated by thefi

I :=

!

f " k[X ] | #! 1, . . . , ! s " k[X ], f =
s"

i=1

! i fi

#

¥ The Radical of I , denoted
$

I , is an ideal ofk[X ] deÞned as follows.
$

I := { f " k[X ] | #m " N. f m " I }

Hilbert Basis Theorem
Every ideal ofk[X ] is Þnitely generated.
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Varieties and Vanishing Ideals

DeÞnition:Variety
Let I = ( f1, . . . , fs) be an ideal ofk[X ]. A variety V(I ) is a subset ofkn

deÞned as follows.

V(I ) := { x " kn | f1(x) = 0 , . . . , fs(x) = 0 }

DeÞnition:Vanishing ideal
Let S be a subset ofkn. A Vanishing idealI (S) is an ideal ofk[X ] deÞned
as follows.

I (S) := { f " k[X ] | %x " S, f (x) = 0 }
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Monomial Orders

¥ A monomial is an element ofk[X ] of the form X ! 1
1 á á áX ! n

n .

¥ Notation: X ! , " := ( " 1, . . . , " n) " Nn.

DeÞnition:Monomial Order
Total order on the set of monomials satisfying:

1 For all # " Nn, X ! < X " impliesX ! X # < X " X #,

2 For all " " Nn, X ! > 1, so 1 is the minimal element.

Example: Lex Ordering
Extends the lexicographic orderingX1 > X2 > á á á> Xn as follows:

X ! > X " if and only if

$
%&

%'

" 1 > $1

or " 1 = $1 & " 2 > $2

or
...
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Leading Terms, Monomials and Coe" cients

For a Þxed monomial order (> ), one can write any polynomialf " k[X ] as
follows:

f = cX! +
s"

i=1

ai X " i

such thatc '= 0 and X ! is bigger than any other monomial with a nonzero
coe! cient (formally, for alli = 1 , . . . , s: ai '= 0 implies X ! > X " i ).

DeÞnitions

¥ LT(f ) = cX! : Leading Term of f

¥ LM(f ) = X ! : Leading Monomial of f

¥ LC(f ) = c: Leading Coe! cient of f
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Division / Reduction

Theorem
Given non zero polynomialsf , f1, . . . , fs " k[X ] and a monomial ordering
(> ), there existsr , q1, . . . , qs " k[X ] such that

¥ f = (
( s

1 qi fi ) + r

¥ No term in r is divisible by any LT(fi )

¥ LT( f ) = max> { LT(qi )LT( fi ) | qi '= 0 }

GivenI an ideal ofk[X ], the leading terms ideal of I is deÞned by

LT(I ) := ( { LT( f ) | f " I } )

That is, the ideal generated by all the LT of all the polynomials inI . By
deÞnition the following inclusion of ideals holds

(LT( f1), . . . , LT( fs)) ! LT( I )
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Gr¬obner Bases

¥ LT(I ) is ÓbiggerÓ than (LT(f1), . . . , LT( fs))

¥ X > Y : f1 = X 2 + X ; f2 = X 2 + Y

¥ (LT( f1), LT( f2)) = ( X 2, X 2) = ( X 2)

¥ f1 ( f2 = X ( Y " I := ( f1, f2)

¥ LT(X ( Y ) = X is in (LT(I )). Clearly X /" (X 2)

DeÞnition:Gr¬obner Bases
Fix the monomial order (> ). Let I be an ideal ofk[X ]. G is a Gr¬obner
Basisfor I with respect to (> ) if and only if

(LT( g) | g " G) = (LT( I )) .

In words: The leading terms ideal ofG is generated by the leading terms
of the generators ofG.
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Reduced Gr¬obner Basis

G = ( g1, . . . , gm) is reduced if for everyi = 1 , . . . , m, LC(gi ) = 1 and
LT(gi ) does not divide any term of anygj , j '= i .

Example

¥ G = ( X + Y 2, Y ) is a non reduced Gr¬obner basis.

¥ (X , Y ) is a reduced Gr¬obner basis.

Theorem
Every ideal has a unique reduced Gr¬obner Basis representation (up to the
Þxed monomial order).

K. Ghorbal (INRIA) 8 COMASIC M2 8 / 24



Nullstellensatz

k is algebraically closed.

Theorem:HilbertÕs Nullstellensatz

¥ Strong: I (V(I )) =
$

I

¥ Weak: V(I ) = ) if and only if 1" I

Corollaries: Solvability and Gr¬obner Bases
I is an ideal ofk[X ]. The following statements are equivalent:

¥ I '= k[X ]

¥ 1 /" I

¥ V(I ) '= )

¥ I has a Gr¬obner Basis having nonconstant polynomials

¥ The reduced Gr¬obner Basis ofI is di" erent from{ 1}

K. Ghorbal (INRIA) 9 COMASIC M2 9 / 24



Nullstellensatz

k is algebraically closed.

Theorem:HilbertÕs Nullstellensatz

¥ Strong: I (V(I )) =
$

I

¥ Weak: V(I ) = ) if and only if 1" I

Corollaries: Solvability and Gr¬obner Bases
I is an ideal ofk[X ]. The following statements are equivalent:

¥ I '= k[X ]

¥ 1 /" I

¥ V(I ) '= )

¥ I has a Gr¬obner Basis having nonconstant polynomials

¥ The reduced Gr¬obner Basis ofI is di" erent from{ 1}

K. Ghorbal (INRIA) 9 COMASIC M2 9 / 24



Finiteness Theorem

The Finiteness Theorem
Let I be an ideal ofk[X ]. The following statements are equivalent.

¥ V(I ) is Þnite (Þnite set of points inkn)

¥ k[X ]/ I is a Þnite-dimensional vector space overk

¥ Only a Þnite number of monomials are not in LT(I )

In addition dimk k[X ]/ I gives exactly the number of solutions (counted
with their multiplicities) of the system deÞned byI .

Example

¥ I = ( X 2 + 1)

¥ k[X ]/ I is isomorphic, as a vector space, tok2: elements ofk[X ]/ I are
of the form a + bX wherea, b " k

¥ When k is algebraically closed,X 2 + 1 has two roots since it is of
degree 2
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Computational Aspects

¥ Gr¬obner Bases are akin to Standard Bases by Hironaka (1964).

¥ The name Gr¬obner was introduced by Buchberger in his thesis (1965)
where he gives a procedure to compute such bases.

¥ The coe! cients of the intermediate (S) polynomials computed while
generating a basis could be very large, likewise their polynomial
degrees can be as large asn2 if one starts with polynomials of degree
n.

¥ The fastest known implementation if FougereÕs F4 and F5 packages
(available in Maple), they are however limited in the size ofX and the
total degrees of thefi .

¥ Almost all computer algebra systems have an implementation the
Buchberger algorithm (possibly with di" erent optimizations and
heuristics).

K. Ghorbal (INRIA) 11 COMASIC M2 11 / 24



Practical Applications

This classical correspondence between Algebra and Geometry, together
with the existence of procedures to compute Gr¬obner Bases in many
practically relevant cases have many applications:

¥ Solvability of a system of polynomial equations

¥ Finite solutions test

¥ Ideal membership test

¥ Polynomial reduction (division)

¥ Elimination theory (next section)
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Elimination Theorem

¥ k[X , Y ] = k[X1, . . . , Xs, Ys+1 , . . . , Yn]

¥ A monomial ink[X , Y ] has the formX ! Y #

¥ Let I be an ideal ofk[X , Y ]

Elimination Order
A monomial orderingeliminatesX if X ! > X " impliesX ! Y # > X " Y $ for
everyY # and Y $. (For instance, the lex monomial ordering is an
elimination order.)

Elimination Ideal
I * k[Y ] is the elimination idealof I that eliminatesX .

Elimination Theorem
Let G be a Gr¬obner basis ofI for a monomial order (> ) that eliminatesX .
Then G * k[Y ] is a Gr¬obner Basis of the elimination idealI * k[Y ] for the
monomial order onk[Y ] induced by (> ).
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Partial Solutions and Projections

Given the coordinatesx1, . . . , xs, ys+1 , . . . , yn, let

%s : An + An! s

denote the projection onto the lastn ( s coordinates.

Variety of Partial Solutions

%s(V(I )) , V(I * k[Y ]) .

Moreover,V(I * k[Y ]) is the Zariski Closure of the projection, that is the
smallest variety containing the set%s(V(I )).

Example
I = ( XY ( 1, Z ( Y ), with respect to the lex order (X > Y > Z), the
generator ofI form a Gr¬obner Basis. ThusI * k[Y , Z ] = ( Z ( Y ). So
(y, z) = (0 , 0) is in V(I * k[Y ]) but not in %s(V(I )).
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Solving by Triangulation

¥ f1, . . . , fs " k[X1, . . . , Xn]

¥ Use the lex orderX1 > á á á> Xn which is an elimination order for
eachXi

¥ Compute a Gr¬obner BasisG with respect to that order

¥ Then G * k[Xn] is a principal ideal, thus one gets a univariate
polynomial inXn to solve

¥ Now computeG * k[Xn! 1, Xn], knowing theXn, this gives a
univariate polynomial inXn! 1 alone

¥ Keep iterating till solving the entire system
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Example

Order X > Y > Z.

Original System

f1 = X 2 + Y + Z ( 1

f2 = X + Y 2 + Z ( 1

f3 = X + Y + Z2 ( 1

Gr¬obner Basis

g1 = X + Y + Z2 ( 1

g2 = Y 2 ( Y ( Z2 + Z

g3 = 2YZ2 + Z4 ( Z2

g4 = Z6 ( 4Z4 + 4Z3 ( Z2

Elimination Ideals

I1 = G * k[Z ] = ( g4)

I2 = G * k[Y , Z ] = ( g2, g3, g4)

I3 = G * k[X , Y , Z ] = ( g1, g2, g3, g4)
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DeÞnitions

Given a polynomial ordinary di" erential equationúx = f (x).

Initial Value Problem

x(t ), t " U solution of the Cauchy problem
)

dx(t )
dt

= f (x), x(0) = x0

*

Orbit

Ox0 := { x(t ) | t " U} = { x " Rn | #t " R, x = &t (x0)} ! Rn

Invariant Region S ! Rn

%x0 " S, %t " U, x(t ) " S
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Algebraic Invariant Equations

f = ( ( x1 ( 2x2
1x2, ( x2),

! ������ ! ������ ������ ������ ������

! ������

! ������

������

������

������

����

�� �
�

! ������ ! ������ ������ ������ ������

! ������

! ������

������

������

������

����

�� �
�

p(x1, x2) = (x2(0) ! x1(0) x2(0) 2)x1 ( x1(0) (x2 ( x1x2
2 ) = 0
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More DeÞnitions

Gradient

- p :=
)

' p
' x1

, . . . ,
' p
' xn

*

Lie Derivation

Df (p) :=
dp(x(t ))

dt
= - p áf ( úx = f )

Closure (Zariski Topology)

øOx0 := V(I (Ox0))
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Properties of the Zariski Closure

Proposition1: Dimension and Integrability
Ox0 ! øOx0

Proposition2: Stability under Lie derivation
I (O(x0)) is a (proper) di! erential idealfor Df , that is, Df (p) " I (O(x0))
for all p " I (O(x0))

Example: Zariski Dense Varieties
úx = x ! O(x0) = [0 , . [ ! I = /00 ! øOx0 = V(I (O(x0))) = R
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Characterizing Elements ofI (O(x0))

DeÞnition: Di " erential Order
The di! erential orderof p " R[x] denotes the length of the chain of ideals

/p0 ! / p, Df (p)0 ! á á á!
+

p, Df (p), . . . , D(Np! 1)
f (p)

,
=: ' p.

Np = card(' p) (< . sinceR is Notherian).

Theorem
The polynomialp is in I (O(x0)) if and only if D(i )

f (p)(x0) = 0, for all
i = 0 , . . . , Np ( 1.

Proof Sketch
1 : Sincex(t ) is analytic,p(x(t )) is also analytic. Thus for a nonempty
open neighborhoodV ! U around 0, the null Taylor series ofp(t ) is equal
to p, thus p = 0 for all U.
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Corollaries

Corollary1
An algebraic setV(/p0) is invariant for f if and only if

' p ! I (V(/p0)) .

Corollary2
For eachx0, there exists a unique (up to multiplication by a constant and
rearrangement of its factors)p " R[x] such that

' p = I (O(x0)) .
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Decidability:! p ! I (V(/p0))

Givenf and p " R[x], the invariance ofV(/p0) is decidable.

D(Np)
f (p) =

( Np! 1
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- Np! 1
i=1 D(i )

f (p) = 0
. . .

D(3)
f (p) =

( 2
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- 2
i=1 D(i )

f (p) = 0

D(2)
f (p) = ! 0p + ! 1Df (p) (! i " R[x]) & p = 0 + Df (p) = 0

Df (p) = ! p (! " R[x])

V (/p0) is an invariant algebraic set

¥ Existence of! i : Gr¬obner Basis

¥ p = 0 + D(i )
f (p) = 0: (Universal) QuantiÞer Elimination

K. Ghorbal (INRIA) 23 COMASIC M2 23 / 24



Decidability:! p ! I (V(/p0))

Givenf and p " R[x], the invariance ofV(/p0) is decidable.

D(Np)
f (p) =

( Np! 1
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- Np! 1
i=1 D(i )

f (p) = 0
. . .

D(3)
f (p) =

( 2
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- 2
i=1 D(i )

f (p) = 0

D(2)
f (p) = ! 0p + ! 1Df (p) (! i " R[x]) & p = 0 + Df (p) = 0

Df (p) = ! p (! " R[x])

V (/p0) is an invariant algebraic set

¥ Existence of! i : Gr¬obner Basis

¥ p = 0 + D(i )
f (p) = 0: (Universal) QuantiÞer Elimination

K. Ghorbal (INRIA) 23 COMASIC M2 23 / 24



Decidability:! p ! I (V(/p0))

Givenf and p " R[x], the invariance ofV(/p0) is decidable.

D(Np)
f (p) =

( Np! 1
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- Np! 1
i=1 D(i )

f (p) = 0
. . .

D(3)
f (p) =

( 2
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- 2
i=1 D(i )

f (p) = 0

D(2)
f (p) = ! 0p + ! 1Df (p) (! i " R[x]) & p = 0 + Df (p) = 0

Df (p) = ! p (! " R[x])

V (/p0) is an invariant algebraic set

¥ Existence of! i : Gr¬obner Basis

¥ p = 0 + D(i )
f (p) = 0: (Universal) QuantiÞer Elimination

K. Ghorbal (INRIA) 23 COMASIC M2 23 / 24



Decidability:! p ! I (V(/p0))

Givenf and p " R[x], the invariance ofV(/p0) is decidable.

D(Np)
f (p) =

( Np! 1
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- Np! 1
i=1 D(i )

f (p) = 0
. . .

D(3)
f (p) =

( 2
i=0 ! i D

(i )
f (p) (! i " R[x]) & p = 0 +

- 2
i=1 D(i )

f (p) = 0

D(2)
f (p) = ! 0p + ! 1Df (p) (! i " R[x]) & p = 0 + Df (p) = 0

Df (p) = ! p (! " R[x])

V (/p0) is an invariant algebraic set

¥ Existence of! i : Gr¬obner Basis

¥ p = 0 + D(i )
f (p) = 0: (Universal) QuantiÞer Elimination

K. Ghorbal (INRIA) 23 COMASIC M2 23 / 24



References

¥ David A. Cox, John Little and Donal OÕShea,Ideals, Varieties, and
Algorithms, Springer 2007.

¥ Peter Schauenberg,A Gr¬obner-based Treatment of Elimination
Theory for A" ne Varieties, Journal of Symbolic Computation, 2007.

¥ Khalil Ghorbal and Andr«e Platzer,Characterizing Algebraic Invariants
by Di! erential Radical Invariants, TACAS, 2014.

K. Ghorbal (INRIA) 24 COMASIC M2 24 / 24


	Gröbner Bases
	Applications (Elimination Theory)
	Algebraic Characterization of Invariant Varieties

