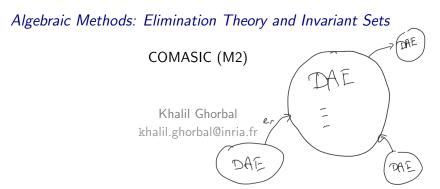
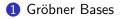
Modeling Physics with Differential-Algebraic Equations

Lecture 4



Outline



2 Applications (Elimination Theory)

3 Algebraic Characterization of Invariant Varieties

Basics

• The **Radical** of *I*, denoted \sqrt{I} , is an ideal of k[X] defined as follows.

$$\sqrt{I} := \{ f \in k[X] \mid \exists m \in \mathbb{N}. \ f^m \in I \}$$

Hilbert Basis Theorem

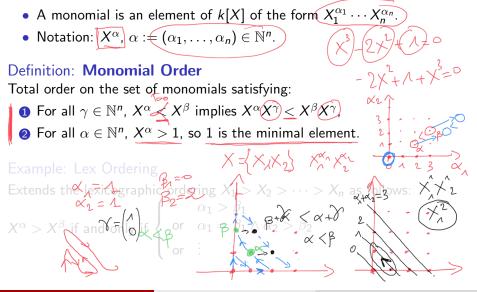
Every ideal of k[X] is finitely generated.

T=(f1,...,fs) s<+00

Varieties and Vanishing Ideals

 $I = \langle n^{2} + y^{2} - n, n + y \rangle$ $\mathcal{F}(I) = \{ (n, y) \in \mathbb{R} \mid n^{2} + y^{2} - n = 0 \}$ Definition: Variety Let $I = (f_1, \ldots, f_s)$ be an ideal of k[X]. A variety $\mathcal{V}(I)$ is a subset of k^n defined as follows. $\mathcal{V}(I) := \{x \in k^n \mid f_1(x) = 0, \dots, f_s(x) = 0\}$ $\mathcal{T}(\mathcal{T}) = \mathcal{T} \quad \mathcal{T} \mathcal{T} \quad$ r Definition: Vanishing ideal Let S be a subset of k^n A Vanishing ideal $\mathcal{I}(S)$ is an ideal of k[X] defined as follows. $\mathcal{I}(S) := \{f \in k[X] \mid \forall x \in S, f(x) = 0\}$ $\mathcal{I}(S) := \{f \in k[X] \mid \forall x \in S, f(x) = 0\}$ $\mathcal{I} = \langle P_{1}, P_{2} \rangle$ $\mathcal{I}_{2} = 0 \quad (n + y) = 0 \quad I = \langle P_{1}, P_{2} \rangle$ $\mathcal{I}_{2} = 0 \quad (n + y) = 0 \quad Y = -x \quad \forall p_{1}(x) = p_{2}(x) = 0$ $\mathcal{I}_{2}(x) = 0 \quad \forall p_{2}(x) = p_{2}(x) = 0$ $\mathcal{I}_{2}(x) = 0 \quad \forall p_{2}(x) = p_{2}(x) = 0$ $\mathcal{I}_{2}(x) = 0 \quad \forall p_{2}(x) = p_{2}(x) = 0$

Monomial Orders



Monomial Orders

- A monomial is an element of k[X] of the form $X_1^{\alpha_1} \cdots X_n^{\alpha_n}$.
- Notation: X^{α} , $\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$.

Definition: Monomial Order

Total order on the set of monomials satisfying:

1 For all
$$\gamma \in \mathbb{N}^n$$
, $X^{lpha} < X^{eta}$ implies $X^{lpha} X^{\gamma} < X^{eta} X^{\gamma}$,

2 For all $\alpha \in \mathbb{N}^n$, $X^{\alpha} > 1$, so 1 is the minimal element.

Example: Lex Ordering

Extends the lexicographic ordering $X_1 > X_2 > \cdots > X_n$ as follows: $X^{\alpha} \xrightarrow{\frown} X^{\beta}$ if and only if $\begin{cases} \alpha_1 > \beta_1 & \alpha_2 > \beta_1 \\ \text{or } \alpha_1 = \beta_1 \land \alpha_2 > \beta_2 \\ \text{or } \vdots & \beta_2 & \beta_2 & \beta_2 & \beta_2 \\$

Leading Terms, Monomials and Coefficients

For a fixed monomial order (>), one can write any polynomial $f \in k[X]$ as follows:

$$f = cX^{\alpha} + \sum_{i=1} a_i X^{\beta_i}$$

such that $c \neq 0$ and X^{α} is bigger than any other monomial with a nonzero coefficient (formally, for all $i = 1, \ldots, s$: $a_i \neq 0$ implies $X^{\alpha} > X^{\beta_i}$).

Definitions

• LM(f) = X^{α} : Leading Term of f $c \times^{\alpha}$ • LM(f) = X^{α} : Leading Monomial of f \wedge^{α} • LC(f) = c: Leading Coefficient of f cdepend

Division / Reduction

Theorem

Given non zero polynomials $f, f_1, \ldots, f_s \in k[X]$ and a monomial ordering (>), there exists $r, q_1, \ldots, q_s \in k[X]$ such that

- No term in r is divisible by any $LT(f_i)$ $LT(f) = \max\{I = f_i\}$
- $LT(f) = \max\{LT(q_i)LT(f_i) \mid q_i \neq 0\} X^3 X^2$ Flq-

Given I an ideal of k[X], the leading terms ideal XI is defined by

$$\chi^{2} = \chi^{2} + \chi = (\chi^{2} - \chi + \chi)(\chi - \eta) = f(f) + f(f) + f(f) + \chi^{2} + \chi$$

That is, the ideal generated by all the LT of all the p_{y_1} als in *I*. By definition the following inclusion of ideals holds $-X + \Lambda$ cleg q $\operatorname{LT}(f_s)) \subset \operatorname{LT}(I)$

Division / Reduction

Theorem

Given non zero polynomials $f, f_1, \ldots, f_s \in k[X]$ and a monomial ordering (>), there exists $r, q_1, \ldots, q_s \in k[X]$ such that

•
$$f = \left(\sum_{1}^{s} q_i f_i\right) + r$$

• No term in r is divisible by any $LT(f_i)$

•
$$LT(f) = \max_{\geq} \{LT(q_i)LT(f_i) \mid q_i \neq 0\}$$

Given *I* an ideal of k[X], the **leading terms ideal** of *I* is defined by $\Box = (\{LT(f) \mid f \in I\})$ $LT(I) := (\{LT(f) \mid f \in I\})$

That is, the ideal generated by all the LT of all the polynomials in *I*. By definition the following inclusion of ideals holds $LT(T) = (LT(F_1)) (LT(f_1), ..., LT(f_s)) = (LT(I)) (LT(I))$

Gröbner Bases

• LT(I) is "bigger" than $(LT(f_1), \dots, LT(f_s))$ (f_1, f_2) is not a Gröbner Gröbner Gröbner

•
$$X > Y$$
: $f_1 = X^2 + X$; $f_2 = X^2 + Y$

•
$$(LT(f_1), LT(f_2)) = (X^2, X^2) = (X^2)$$

•
$$f_1 - f_2 = X - Y \in I := (f_1, f_2)$$

• LT(X - Y) = X is in (LT(I)). Clearly $X \notin (X^2)$ $f_A - f_2$ Definition: Gröbner Bases $LT(I) = (I + f_1)_1 LT(f_2)$

Fix the monomial order (>). Let I be an ideal of k[X]'. G is a Gröbner

$$(\mathsf{LT}(g) \mid g \in G) = (\mathsf{LT}(I))$$
.

Gröbner Bases

 $I = (X_{+}^{2}X, X_{+}^{2}Y)$

= ()+)

• LT(1) is "bigger" than $(LT(f_1), \ldots, LT(f_s))$

•
$$X > Y$$
: $f_1 = X^2 + X$; $f_2 = X^2 + Y$

•
$$(LT(f_1), LT(f_2)) = (X^2, X^2) = (X^2)$$

•
$$f_1 - f_2 = X - Y \in I := (f_1, f_2)$$

• LT(X - Y) = X is in (LT(I)). Clearly $X \notin (X^2)$ $LT[I] = (LT[3_n])^{LT[3_n]}$

Definition: Gröbner Bases

Fix the monomial order (>). Let I be an ideal of k[X]. G is a Gröbner Basis for I with respect to (>) if and only if

$$(LT(g) \mid g \in G) \equiv (LT(I))$$
.

In words: The leading terms ideal of G is generated by the leading terms of the generators of G.

Reduced Gröbner Basis

 $G = (g_1, \dots, g_m) \text{ is reduced if for every } i = 1, \dots, m, LC(g_i) = 1 \text{ and } LT(g_i) \text{ does not divide any term of any } g_j, j \neq i.$ Example $X + Y^2 + (-Y)Y = X \in G$

- $G = (X + Y^2 (Y))$ is a non reduced Gröbner basis.
- (X, Y) is a reduced Gröbner basis.

Theorem

Every ideal has a unique reduced Gröbner Basis representation (up to the fixed monomial order).

Nullstellensatz

k is algebraically closed. Theorem: Hilbert's Nullstellensatz • Strong: $\mathcal{I}(\mathcal{V}(I)) = \sqrt[\mathcal{V}]{I}$ I AD I-VI • Weak: $\mathcal{V}(I) = \emptyset$ if and only if $1 \in I$ I is an ideal of k[X]. The following statements are equivalent: • I has a Gröbner Basis having noncon nt polynomia

Nullstellensatz

Pi E k{x}

P, EKX)

20

k is algebraically closed.

Theorem: Hilbert's Nullstellensatz

• Strong:
$$\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$$

▶ • Weak:
$$\mathcal{V}(I) = \emptyset$$
 if and only if $1 \in I$

Corollaries: Solvability and Gröbner Bases

I is an ideal of k[X]. The following statements are equivalent: $(\mathcal{E}_{n}, \mathcal{E}_{s}) \longrightarrow G_{=}(\mathcal{G}_{n}, \mathcal{G}_{s}) = (\mathcal{E}_{n}, \mathcal{E}_{s})$

- (I proper) • $I \neq k[X]$
- 1 ∉ *I*
- $\mathcal{V}(I) \neq \emptyset$
 - I has a Gröbner Basis having nonconstant polynomials | 3 ; 🗠
- The reduced Gröbner Basis of I is different from {1}

 $\Lambda = 2$

 $G - (\Lambda)$

Finiteness Theorem

The Finiteness Theorem

Let I be an ideal of k[X]. The following statements are equivalent.

- $\mathcal{V}(I)$ is finite (finite set of points in k^n)
- k[X]/I is a finite-dimensional vector space over k
- Only a finite number of monomials are not in LT(1)

In addition $\dim_k k[X]/I$ gives exactly the number of solutions (counted with their multiplicities) of the system defined by *I*.

Example

- $I = (X^2 + 1)$
- k[X]/I is isomorphic, as a vector space, to k²: elements of k[X]/I are of the form a + bX where a, b ∈ k
- When k is algebraically closed, $X^2 + 1$ has two roots since it is of degree 2

Computational Aspects

- Gröbner Bases are akin to Standard Bases by Hironaka (1964).
- The name Gröbner was introduced by Buchberger in his thesis (1965) where he gives a procedure to compute such bases.
- The coefficients of the intermediate (S) polynomials computed while generating a basis could be very large, likewise their polynomial degrees can be as large as n^2 if one starts with polynomials of degree n.
- The fastest known implementation if Fougere's F4 and F5 packages (available in Maple), they are however limited in the size of X and the total degrees of the f_i .
- Almost all computer algebra systems have an implementation the Buchberger algorithm (possibly with different optimizations and heuristics).

Practical Applications

This classical correspondence between Algebra and Geometry, together with the existence of procedures to compute Gröbner Bases in many practically relevant cases have many applications:

- Solvability of a system of polynomial equations
- Finite solutions test
- Ideal membership test
- Polynomial reduction (division)
- Elimination theory (next section)

Outline

Gröbner Bases

2 Applications (Elimination Theory)

3 Algebraic Characterization of Invariant Varieties

Elimination Theorem

- $k[X, Y] = k[X_1, ..., X_s, Y_{s+1}, ..., Y_n]$
- A monomial in k[X,Y] has the form $X^{lpha}Y^{\gamma}$
- Let I be an ideal of k[X, Y]

Elimination Order

A monomial ordering eliminates X if $X^{\alpha} > X^{\beta}$ implies $X^{\alpha}Y^{\gamma} > X^{\beta}Y^{\delta}$ for every Y^{γ} and Y^{δ} . (For instance, the lex monomial ordering is an elimination order.)

Elimination Ideal

 $I \cap k[Y]$ is the *elimination ideal* of I that eliminates X.

Elimination Theorem

Let G be a Gröbner basis of I for a monomial order (>) that eliminates X. Then $G \cap k[Y]$ is a Gröbner Basis of the elimination ideal $I \cap k[Y]$ for the monomial order on k[Y] induced by (>).

Elimination Theorem

- $k[X, Y] = k[X_1, ..., X_s, Y_{s+1}, ..., Y_n]$
- A monomial in k[X,Y] has the form $X^{lpha}Y^{\gamma}$
- Let I be an ideal of k[X, Y]

Elimination Order

A monomial ordering eliminates X if $X^{\alpha} > X^{\beta}$ implies $X^{\alpha}Y^{\gamma} > X^{\beta}Y^{\delta}$ for every Y^{γ} and Y^{δ} . (For instance, the lex monomial ordering is an elimination order.)

Elimination Ideal

 $I \cap k[Y]$ is the *elimination ideal* of I that eliminates X.

Elimination Theorem

Let G be a Gröbner basis of I for a monomial order (>) that eliminates X. Then $G \cap k[Y]$ is a Gröbner Basis of the elimination ideal $I \cap k[Y]$ for the monomial order on k[Y] induced by (>).

Elimination Theorem

- $k[X, Y] = k[X_1, ..., X_s, Y_{s+1}, ..., Y_n]$
- A monomial in k[X,Y] has the form $X^{lpha}Y^{\gamma}$
- Let I be an ideal of k[X, Y]

Elimination Order

A monomial ordering eliminates X if $X^{\alpha} > X^{\beta}$ implies $X^{\alpha}Y^{\gamma} > X^{\beta}Y^{\delta}$ for every Y^{γ} and Y^{δ} . (For instance, the lex monomial ordering is an elimination order.)

Elimination Ideal

 $I \cap k[Y]$ is the *elimination ideal* of I that eliminates X.

Elimination Theorem

Let G be a Gröbner basis of I for a monomial order (>) that eliminates X. Then $G \cap k[Y]$ is a Gröbner Basis of the elimination ideal $I \cap k[Y]$ for the monomial order on k[Y] induced by (>).

Partial Solutions and Projections

Given the coordinates $x_1, \ldots, x_s, y_{s+1}, \ldots, y_n$, let

$$\pi_s: \mathbb{A}^n \to \mathbb{A}^{n-s}$$

denote the projection onto the last n - s coordinates.

Variety of Partial Solutions

$$\pi_s(\mathcal{V}(I)) \subseteq \mathcal{V}(I \cap k[Y])$$
.

Moreover, $\mathcal{V}(I \cap k[Y])$ is the Zariski Closure of the projection, that is the smallest variety containing the set $\pi_s(\mathcal{V}(I))$.

Example

I = (XY - 1, Z - Y), with respect to the lex order (X > Y > Z), the generator of I form a Gröbner Basis. Thus $I \cap k[Y, Z] = (Z - Y)$. So (y, z) = (0, 0) is in $\mathcal{V}(I \cap k[Y])$ but not in $\pi_s(\mathcal{V}(I))$.

Partial Solutions and Projections

Given the coordinates $x_1, \ldots, x_s, y_{s+1}, \ldots, y_n$, let

$$\pi_s: \mathbb{A}^n \to \mathbb{A}^{n-s}$$

denote the projection onto the last n - s coordinates.

Variety of Partial Solutions

$$\pi_s(\mathcal{V}(I)) \subseteq \mathcal{V}(I \cap k[Y])$$
.

Moreover, $\mathcal{V}(I \cap k[Y])$ is the Zariski Closure of the projection, that is the smallest variety containing the set $\pi_s(\mathcal{V}(I))$.

Example

I = (XY - 1, Z - Y), with respect to the lex order (X > Y > Z), the generator of I form a Gröbner Basis. Thus $I \cap k[Y, Z] = (Z - Y)$. So (y, z) = (0, 0) is in $\mathcal{V}(I \cap k[Y])$ but not in $\pi_s(\mathcal{V}(I))$.

Solving by Triangulation

- $f_1,\ldots,f_s\in k[X_1,\ldots,X_n]$
- Use the lex order X₁ > · · · > X_n which is an elimination order for each X_i
- Compute a Gröbner Basis G with respect to that order
- Then G ∩ k[X_n] is a principal ideal, thus one gets a univariate polynomial in X_n to solve
- Now compute G ∩ k[X_{n-1}, X_n], knowing the X_n, this gives a univariate polynomial in X_{n-1} alone
- Keep iterating till solving the entire system

Example

Order $X > Y > Z$.	Gröbner Basis
Original System	Grobiler Dasis
$f_1 = X^2 + Y + Z - 1$ $f_2 = X + Y^2 + Z - 1$ $f_3 = X + Y + Z^2 - 1$	$g_{1} = X + Y + Z^{2} - 1$ $g_{2} = Y^{2} - Y - Z^{2} + Z$ $g_{3} = 2YZ^{2} + Z^{4} - Z^{2}$ $g_{4} = Z^{6} - 4Z^{4} + 4Z^{3} - Z^{2}$

Elimination Ideals

$$I_1 = G \cap k[Z] = (g_4)$$

$$I_2 = G \cap k[Y, Z] = (g_2, g_3, g_4)$$

$$I_3 = G \cap k[X, Y, Z] = (g_1, g_2, g_3, g_4)$$

Outline

1 Gröbner Bases

2 Applications (Elimination Theory)

3 Algebraic Characterization of Invariant Varieties

Definitions

Given a polynomial ordinary differential equation $\dot{x} = f(x)$. Initial Value Problem

$$\mathbf{x}(t), t \in U$$
 solution of the Cauchy problem $\left(\frac{d\mathbf{x}(t)}{dt} = \mathbf{f}(\mathbf{x}), \mathbf{x}(0) = \mathbf{x}_0\right)$

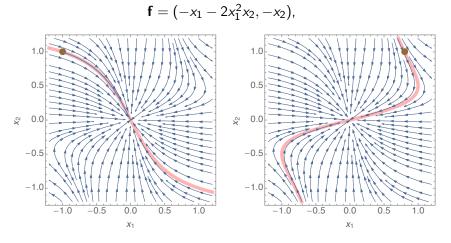
Orbit

$$\mathcal{O}_{\mathsf{x}_0} := \{\mathsf{x}(t) \mid t \in U\} = \{\mathsf{x} \in \mathbb{R}^n \mid \exists t \in \mathbb{R}, \mathsf{x} = arphi_t(\mathsf{x}_0)\} \subset \mathbb{R}^n$$

Invariant Region $S \subset \mathbb{R}^n$

$$\forall \mathbf{x}_0 \in S, \forall t \in U, \mathbf{x}(t) \in S$$

Algebraic Invariant Equations



 $p(x_1, x_2) = (x_2(0) - x_1(0)x_2(0)^2)x_1 - x_1(0)(x_2 - x_1x_2^2) = 0$

More Definitions

Gradient

$$\nabla p := \left(\frac{\partial p}{\partial x_1}, \dots, \frac{\partial p}{\partial x_n}\right)$$

Lie Derivation

$$\mathfrak{D}_{\mathbf{f}}(p) := \frac{dp(\mathbf{x}(t))}{dt} = \nabla p \cdot \mathbf{f} \qquad (\dot{\mathbf{x}} = \mathbf{f})$$

Closure (Zariski Topology)

$$\bar{\mathcal{O}}_{\mathbf{x}_0} := \mathcal{V}(\mathcal{I}(\mathcal{O}_{\mathbf{x}_0}))$$

Proposition1: Dimension and Integrability $\mathcal{O}_{x_0}\subset \bar{\mathcal{O}}_{x_0}$

Proposition2: Stability under Lie derivation

 $\mathcal{I}(\mathcal{O}(\mathbf{x}_0))$ is a (proper) differential ideal for $\mathfrak{D}_{\mathbf{f}}$, that is, $\mathfrak{D}_{\mathbf{f}}(p) \in \mathcal{I}(\mathcal{O}(\mathbf{x}_0))$ for all $p \in \mathcal{I}(\mathcal{O}(\mathbf{x}_0))$

Example: Zariski Dense Varieties $\dot{x} = x \rightsquigarrow \mathcal{O}(\mathbf{x}_0) = [0, \infty[\rightsquigarrow I = \langle 0 \rangle \rightsquigarrow \overline{\mathcal{O}}_{\mathbf{x}_0} = \mathcal{V}(\mathcal{I}(\mathcal{O}(\mathbf{x}_0))) = \mathbb{R}$

Characterizing Elements of $\mathcal{I}(\mathcal{O}(\mathbf{x}_0))$

Definition: Differential Order

The *differential order* of $p \in \mathbb{R}[\mathbf{x}]$ denotes the length of the chain of ideals

$$\langle p
angle \subset \langle p, \mathfrak{D}_{\mathbf{f}}(p)
angle \subset \cdots \subset \left\langle p, \mathfrak{D}_{\mathbf{f}}(p), \dots, \mathfrak{D}_{\mathbf{f}}^{(N_p-1)}(p)
ight
angle =: \partial p.$$

 $N_p = \operatorname{card}(\partial p)$ (< ∞ since \mathbb{R} is Notherian).

Characterizing Elements of $\mathcal{I}(\mathcal{O}(\mathbf{x}_0))$

Definition: Differential Order

The differential order of $p \in \mathbb{R}[\mathbf{x}]$ denotes the length of the chain of ideals

$$\langle p
angle \subset \langle p, \mathfrak{D}_{\mathbf{f}}(p)
angle \subset \cdots \subset \left\langle p, \mathfrak{D}_{\mathbf{f}}(p), \dots, \mathfrak{D}_{\mathbf{f}}^{(N_p-1)}(p)
ight
angle =: \partial p.$$

 $N_p = \operatorname{card}(\partial p) \ (< \infty \text{ since } \mathbb{R} \text{ is Notherian}).$

Theorem

The polynomial p is in $I(\mathcal{O}(\mathbf{x}_0))$ if and only if $\mathfrak{D}_{\mathbf{f}}^{(i)}(p)(\mathbf{x}_0) = 0$, for all $i = 0, \ldots, N_p - 1$.

Characterizing Elements of $\mathcal{I}(\mathcal{O}(\mathbf{x}_0))$

Definition: Differential Order

The *differential order* of $p \in \mathbb{R}[x]$ denotes the length of the chain of ideals

$$\langle p
angle \subset \langle p, \mathfrak{D}_{\mathbf{f}}(p)
angle \subset \cdots \subset \left\langle p, \mathfrak{D}_{\mathbf{f}}(p), \dots, \mathfrak{D}_{\mathbf{f}}^{(N_p-1)}(p)
ight
angle =: \partial p.$$

 $N_p = \operatorname{card}(\partial p) \ (< \infty \text{ since } \mathbb{R} \text{ is Notherian}).$

Theorem

The polynomial p is in $I(\mathcal{O}(\mathbf{x}_0))$ if and only if $\mathfrak{D}_{\mathbf{f}}^{(i)}(p)(\mathbf{x}_0) = 0$, for all $i = 0, \ldots, N_p - 1$.

Proof Sketch

 \leftarrow : Since $\mathbf{x}(t)$ is analytic, $p(\mathbf{x}(t))$ is also analytic. Thus for a nonempty open neighborhood $V \subset U$ around 0, the null Taylor series of p(t) is equal to p, thus p = 0 for all U.

Corollaries

Corollary1

An algebraic set $\mathcal{V}(\langle p \rangle)$ is invariant for **f** if and only if

 $\partial p \subset \mathcal{I}(\mathcal{V}(\langle p \rangle))$.

Corollary2

For each \mathbf{x}_0 , there exists a unique (up to multiplication by a constant and rearrangement of its factors) $p \in \mathbb{R}[\mathbf{x}]$ such that

$$\partial p = \mathcal{I}(\mathcal{O}(\mathbf{x}_0))$$
 .

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $\mathcal{V}(\langle p \rangle)$ is decidable.

 $\mathfrak{D}_{\mathbf{f}}^{(N_p)}(p) = \sum_{i=0}^{N_p-1} \lambda_i \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_i \in \mathbb{R}[\mathbf{x}]) \land p = 0 \to \bigwedge_{i=1}^{N_p-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$ $\mathfrak{D}_{\mathbf{f}}^{(3)}(p) = \sum_{i=0}^{2} \lambda_i \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_i \in \mathbb{R}[\mathbf{x}]) \land p = 0 \to \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$ $\mathfrak{D}_{\mathbf{f}}^{(2)}(p) = \lambda_0 p + \lambda_1 \mathfrak{D}_{\mathbf{f}}(p) \ (\lambda_i \in \mathbb{R}[\mathbf{x}]) \land p = 0 \to \mathfrak{D}_{\mathbf{f}}(p) = 0$ $\mathfrak{D}_{\mathbf{f}}(p) = \lambda p \ (\lambda \in \mathbb{R}[\mathbf{x}])$

- Existence of λ_i : Gröbner Basis
- $p = 0
 ightarrow \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $\mathcal{V}(\langle p \rangle)$ is decidable.

$$\begin{split} \mathfrak{D}_{\mathbf{f}}^{(N_p)}(p) &= \sum_{i=0}^{N_p-1} \lambda_i \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \; (\lambda_i \in \mathbb{R}[\mathbf{x}]) \; \land \; p = 0 \to \bigwedge_{i=1}^{N_p-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0 \\ & \dots \\ \mathfrak{D}_{\mathbf{f}}^{(3)}(p) &= \sum_{i=0}^{2} \lambda_i \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \; (\lambda_i \in \mathbb{R}[\mathbf{x}]) \; \land \; p = 0 \to \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0 \\ \mathfrak{D}_{\mathbf{f}}^{(2)}(p) &= \lambda_0 p + \lambda_1 \mathfrak{D}_{\mathbf{f}}(p) \; (\lambda_i \in \mathbb{R}[\mathbf{x}]) \; \land \; p = 0 \to \mathfrak{D}_{\mathbf{f}}(p) = 0 \\ \mathfrak{D}_{\mathbf{f}}(p) &= \lambda_p \; (\lambda \in \mathbb{R}[\mathbf{x}]) \end{split}$$

- Existence of λ_i : Gröbner Basis
- $p = 0
 ightarrow \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $\mathcal{V}(\langle p \rangle)$ is decidable.

 $\mathfrak{D}_{\mathbf{f}}^{(N_p)}(p) = \sum_{i=0}^{N_p-1} \lambda_i \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_i \in \mathbb{R}[\mathbf{x}]) \ \land \ p = 0 \rightarrow \bigwedge_{i=1}^{N_p-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$

$$\mathfrak{D}_{\mathbf{f}}^{(3)}(p) = \sum_{i=0}^{2} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \land p = 0 \to \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$$
$$\mathfrak{D}_{\mathbf{f}}^{(2)}(p) = \lambda_{0}p + \lambda_{1} \mathfrak{D}_{\mathbf{f}}(p) \ (\lambda_{i} \in \mathbb{R}[\mathbf{x}]) \land p = 0 \to \mathfrak{D}_{\mathbf{f}}(p) = 0$$
$$\mathfrak{D}_{\mathbf{f}}(p) = \lambda p \ (\lambda \in \mathbb{R}[\mathbf{x}])$$

- Existence of λ_i : Gröbner Basis
- $p = 0
 ightarrow \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

Given **f** and $p \in \mathbb{R}[\mathbf{x}]$, the invariance of $\mathcal{V}(\langle p \rangle)$ is decidable.

$$\begin{split} \mathfrak{D}_{\mathbf{f}}^{(N_{p})}(p) &= \sum_{i=0}^{N_{p}-1} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \left(\lambda_{i} \in \mathbb{R}[\mathbf{x}]\right) \land p = 0 \rightarrow \bigwedge_{i=1}^{N_{p}-1} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0 \\ & \cdots \\ \mathfrak{D}_{\mathbf{f}}^{(3)}(p) &= \sum_{i=0}^{2} \lambda_{i} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) \left(\lambda_{i} \in \mathbb{R}[\mathbf{x}]\right) \land p = 0 \rightarrow \bigwedge_{i=1}^{2} \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0 \\ \mathfrak{D}_{\mathbf{f}}^{(2)}(p) &= \lambda_{0}p + \lambda_{1} \mathfrak{D}_{\mathbf{f}}(p) \left(\lambda_{i} \in \mathbb{R}[\mathbf{x}]\right) \land p = 0 \rightarrow \mathfrak{D}_{\mathbf{f}}(p) = 0 \\ \mathfrak{D}_{\mathbf{f}}(p) &= \lambda_{p} \left(\lambda \in \mathbb{R}[\mathbf{x}]\right) \end{split}$$

- Existence of λ_i : Gröbner Basis
- $p = 0
 ightarrow \mathfrak{D}_{\mathbf{f}}^{(i)}(p) = 0$: (Universal) Quantifier Elimination

- David A. Cox, John Little and Donal O'Shea, *Ideals, Varieties, and Algorithms*, Springer 2007.
- Peter Schauenberg, A Gröbner-based Treatment of Elimination Theory for Affine Varieties, Journal of Symbolic Computation, 2007.
- Khalil Ghorbal and André Platzer, *Characterizing Algebraic Invariants* by Differential Radical Invariants, TACAS, 2014.