Exam 2022-2023 (Solutions)

Khalil Ghorbal

January 2023

We established a formal link between typed λ -calculi and cartesian closed categories (Curry-Howard-Lambek isomorphism). But what if we remove types? To which structure the pure (untyped) λ -calculus is isomorphic? Let's see!

Recall that a (small) category with one object is a monoid, that is a semigroup with a unitary element. (recall that small means that the class of morphisms between any two elements is a set. It is a technicality that you can drop in what follows.)

- **0.** Describe a small closed cartesian category with only one object (elements and arrows are to be made explicit).
- **0. sol** a cartesian closed category has a terminal object, thus the unique object of the monoid is that terminal object, which necessarily has a unique identity reflexive map. Thus we have the simplest possible non-empty category that has one element and one arrow and which satisfies all the axioms of a ccc.

A C-monoid (for Curry or Cartesian) is a monoid \mathcal{M} that is almost a cartesian closed category in the sense that it enjoys similar structure. Technically \mathcal{M} has an extra structure $(\pi, \pi', \epsilon, *, <>)$, where π , π' , and ϵ are elements (or nullary operations) of \mathcal{M} , $(-)^*$ is a unary operation and <-,-> is a binary operation satisfying the following identities for all a, b, c, h, and k (where composition is denoted by simple concatenation, so ab denotes $a \circ b$):

(A1.)
$$\pi < a, b >= a$$

(A2.)
$$\pi' < a, b >= b$$

(A3.)
$$< \pi c, \pi' c > = c$$

(A4.)
$$\epsilon < h^* \pi, \pi' > = h$$

(A5.)
$$(\epsilon < k\pi, \pi' >)^* = k$$

- 1. Recall briefly what do these axioms refer to in a standard cartesian closed category? (observe that the type subscript is omitted since there exists only one element.)
- **1. sol** If we had a cartesian closed category, π and π' would be the projections, ϵ the evaluation mapping (for the exponential), and the star (*) is the transposition.
 - 1.' What's missing to have a full cartesian closed category?
- 1.' sol The terminal object.
 - 2. Using the above axioms, prove the following consequences for all a, b, c, h, and k

(A6.)
$$< a, b > c = < ac, bc >$$

(A6. sol) $< a, b > c = < \pi < a, b > c, \pi' < a, b > c > = < ac, bc >$

- (A7.) $\langle \pi, \pi' \rangle = 1$ by A3, A1 and A2.
- (A7. sol) $\langle \pi, \pi' \rangle = \langle \pi 1, \pi' 1 \rangle = 1$ by the identity law and A3.
 - (A8.) $\epsilon < h^*a, b >= h < a, b >$
- (A8. sol) $h < a, b >= \epsilon < h^*\pi, \pi' >< a, b >= \epsilon < h^*\pi < a, b >, \pi' < a, b >>= \epsilon < h^*a, b >$ by A4 then A6 and A1/A2.
 - (A9.) $h^*k = (h < k\pi, \pi' >)^*$
- (A9. sol) $(h < k\pi, \pi' >)^* = (\epsilon < h^*\pi, \pi' > < k\pi, \pi' >)^* = (\epsilon < h^*k\pi, \pi' >)^* = h^*k$ by A4, A6, and A5
 - (A10.) $\epsilon^* = 1$
- (A10. sol) $1 = (\epsilon < 1\pi, \pi' >)^* = (\epsilon)^*$ by A5, A7, and A5
 - 3. Like we did in cartesian closed categories, let $a \times b$ denote $\langle a\pi, b\pi' \rangle$ and $g^f = (g\varepsilon \langle \pi, f\pi' \rangle)^*$. Prove the following
 - (A11.) $(a \times b)(c \times d) = ac \times bd$
- (A11 sol) $(a \times b)(c \times d) = \langle a\pi, b\pi' \rangle (c \times d) = \langle a\pi(c \times d), b\pi'(c \times d) \rangle = \langle ac\pi, bd\pi' \rangle = ac \times bd$
 - (A12.) $g^f h = (g\epsilon < h\pi, f\pi' >)^*$
- (A12. sol) $g^f h = (g\epsilon < \pi, f\pi' >)^* h = (g\epsilon < \pi, f\pi' >< h\pi, \pi' >)^* = (g\epsilon < h\pi, f\pi' >)^*$
 - (A13.) $g^f k^h = (gk)^{(hf)}$
- (A13. sol) $g^f k^h = (g\epsilon < k^h \pi, f\pi' >)^* = (g\epsilon < (k\epsilon < \pi\pi, h\pi' >)^*, f\pi' >)^* = (gk\epsilon < \pi\pi, h\pi' >< 1, f\pi' >)^* = (gk\epsilon < \pi, hf\pi' >)^* = (gk)^{(hf)}$

We can form a category of C-monoids where arrows are morphisms, called C-homomorphisms, that preserve the operations π , π' , $(-)^*$, and $<-,->^*$. Given a monoid \mathcal{M} , we can also form the polynomial C-monoid $\mathcal{M}[x]$ by the usual construction of universal algebra (like we did for cartesian closed category): the elements of $\mathcal{M}[x]$ are polynomials (or words) built up from x and the elements of \mathcal{M} using the C-monoid operations modulo the axioms A1–A5. In particular the mapping $h: \mathcal{M} \to \mathcal{M}[x]$ which sends every elements of \mathcal{M} onto the corresponding constant polynomial in $\mathcal{M}[x]$ is a C-homomorphism.

C-monoids have also the property of functional completeness, that is for every polynomial $\varphi(x)$ in the indeterminate x, there exists a unique constant f in \mathcal{M} such that $f < (x\pi')^*, 1 >= \varphi(x)$ in $\mathcal{M}[x]$.

Let $\rho_x \varphi(x)$ be defined inductively on the length of the word $\varphi(x)$ by

- (i.) $\rho_x k = k\pi'$ if k is a constant
- (ii.) $\rho_{x}x = \epsilon$
- (iii.) $\rho_x < \psi(x), \xi(x) > = < \rho_x \psi(x), \rho_x \xi(x) >$
- (iv.) $\rho_x(\xi(x)\psi(x)) = \rho_x\xi(x) < \pi, \rho_x\psi(x) >$
- (v.) $\rho_{x}(\psi(x)^{*}) = (\rho_{x}\psi(x)\alpha)^{*}$

where $\alpha = \langle \pi \pi, \langle \pi' \pi, \pi' \rangle \rangle$ (I am being a slightly informal with the equality here, since ideally, we would have used two different signs, one for identical words and one for the equality over equivalence classes; it won't matter much here, but it is good to keep it in mind).

- **4.** As a consequence of functional completeness, prove that if $\varphi(x)$ is a polynomial in the indeterminate x over a C-monoid \mathcal{M} , then there exists a unique g in \mathcal{M} such that $g \wr x = \varphi(x)$ where the binary operator '\text{'} is as follows $g \wr a = \varepsilon < g(a\pi')^*, 1 >$.
- **4. sol** The natural candidate for g would be the transpose of f in \mathcal{M} , that is f^* , where the existence of f is ensured by functional completeness. By A8, one therefore gets $g \wr x = f^* \wr x = \epsilon < f^*(x\pi')^*, 1 >= f < (x\pi')^*, 1 >= \varphi(x)$.

- 5. Suppose one writes $\lambda_x \varphi(x)$ for $(\rho_x \varphi(x))^*$, where ρ_x is as above (using the λ -calculus notation). Rephrase (4.) using λ_x .
- **5. sol** When $\varphi(x)$ is a constant k in \mathcal{M} , $f = \rho_x k = k\pi'$ which is in \mathcal{M} . Let's check. $(k\pi') < (x\pi')^*$, $1 >= k = \varphi(x)$. When $\varphi(x)$ is a variable x, then $f = \rho_x x = \varepsilon$ which is also in \mathcal{M} for $\varepsilon < (x\pi')^*$, $1 >= (x\pi') < 1$, $1 >= x1 = x = \varphi(x)$ (by A8). When $\varphi(x)$ has the form $< \psi(x)$, $\xi(x) >$ and both $\psi(x)$ and $\xi(x)$ are of length 1 (either constants or variables), we set $f = < \rho_x \psi(x)$, $\rho_x \xi(x) >$ which is also in \mathcal{M} since we've just seen that ρ_x is acting as a binder for x. One gets $< \rho_x \psi(x)$, $\rho_x \xi(x) >< (x\pi')^*$, $1 >= < \rho_x \psi(x) < (x\pi')^*$, $1 >, \rho_x \xi(x) < (x\pi')^*$, $1 >= < \psi(x)$, $\xi(x) >= \varphi(x)$ as desired (the last equality holds because of the length of the operands and what we have just seen). Thus g is defined inductively as $f^* = (\rho_x \varphi(x))^*$. This further gives $\varphi(x) = g \wr x = (\lambda_x \varphi(x)) \wr x$ (morally, one is applying the functional abstraction of $\varphi(x)$, which is $\lambda_x \varphi(x)$ to x to get, well, $\varphi(x)$). Likewise for the other cases, and by induction on the length of $\varphi(x)$ one gets the desired f for any $\varphi(x)$ (constructively!).
 - **6.** Use the universal property of $\mathcal{M}[x]$ to state the β reduction. (The universal property of $\mathcal{M}[x]$ says that for every C-homomorphism $f: \mathcal{M} \to \mathcal{B}$ and every element $B \in \mathcal{B}$, there exists a unique C-homomorphosm $f_B: \mathcal{M}[x] \to \mathcal{B}$ such that $f_B h = f$ and $f_B(x) = B$.)
- **6. sol** We want to show that, for any element a of \mathcal{M} , $(\lambda_x \varphi(x)) \wr a = \varphi(a)$. We just proved that $(\lambda_x \varphi(x)) \wr x = \varphi(x)$.

The universal property of h with the identity over \mathcal{M} as f ensures the existence, for each element a of \mathcal{M} of a C-homomorphism $(1_{\mathcal{M}})_a$: $\mathcal{M}[x] \to \mathcal{M}$ such that $(1_{\mathcal{M}})_a h = 1_{\mathcal{M}}$ and $(1_{\mathcal{M}})_a(x) = a$ for every $a \in \mathcal{M}$. In particular, $(1_{\mathcal{M}})_a \varphi(x) = \varphi(a)$ since $1_{\mathcal{M}}$ sends x to a and leaves the rest as is. Let $g = \lambda_x \varphi(x)$. We have $(1_{\mathcal{M}})_a(g \wr x) = (1_{\mathcal{M}})_a(\epsilon < g(x\pi')^*, 1 >) = \epsilon < g(a\pi')^*, 1 >= g \wr a$, and $(1_{\mathcal{M}})_a \varphi(x) = \varphi(a)$. Since $g \wr x = \varphi(x)$, we get $g \wr a = \varphi(a)$ for all $a \in \mathcal{M}$.

An interesting feature of C-monoids is that they enjoy the following fixed point theorem.

- 7. Prove that for every polynomial $\varphi(x)$ in $\mathcal{M}[x]$, there exists an element $a \in \mathcal{M}$ such that $\varphi(a) = a$.
- 7. sol Let $a = \lambda_x \varphi(x \wr x)$. Then $a \wr a = (\lambda_x \varphi(x \wr x)) \wr a = \varphi(a \wr a)$. What's the meaning of $\varphi(x \wr x)$ here?
 - 8. Do you think that a C-monoid can incorporate propositional logic? Comment.
- **8. sol** Propositional logic has a unary negation operation that doesn't have a fixed point which contradicts the result we just proved.

Bonus B. Show that in any cartesian closed poset with joins $p \lor q$, the following law of IPC (Intuitionistic Propositional Calculus) holds

$$((p \lor q) \Rightarrow r) \Rightarrow ((p \Rightarrow r) \land (q \Rightarrow r))$$

Generalize this result to an arbitrary category (not necessarily poset) by showing that there is always an arrow of the corresponding form.

Bonus BB. A functor $F: \mathcal{A} \to \mathcal{B}$ is essentially surjective on objects if for all $B \in \mathcal{B}$, there exists $A \in \mathcal{A}$ such that $F(A) \cong B$. Prove that a functor is an equivalence if and only if it is faithful, full, and essentially surjective on objects (restrict to small categories).