Exam 2022-2023 (Solutions)

Khalil Ghorbal

January 2023

We established a formal link between typed λ-calculi and cartesian closed categories (Curry-HowardLambek isomorphism). But what if we remove types? To which structure the pure (untyped) λ-calculus is isomorphic? Let's see!

Recall that a (small) category with one object is a monoid, that is a semigroup with a unitary element. (recall that small means that the class of morphisms between any two elements is a set. It is a technicality that you can drop in what follows.)
0. Describe a small closed cartesian category with only one object (elements and arrows are to be made explicit).
0. sol a cartesian closed category has a terminal object, thus the unique object of the monoid is that terminal object, which necessarily has a unique identity reflexive map. Thus we have the simplest possible non-empty category that has one element and one arrow and which satisfies all the axioms of a ccc.

A C-monoid (for Curry or Cartesian) is a monoid \mathcal{M} that is almost a cartesian closed category in the sense that it enjoys similar structure. Technically \mathcal{M} has an extra structure ($\pi, \pi^{\prime}, \epsilon, *,\langle \rangle$), where π, π^{\prime}, and ϵ are elements (or nullary operations) of $M,(-)^{*}$ is a unary operation and $<-,->$ is a binary operation satisfying the following identities for all a, b, c, h, and k (where composition is denoted by simple concatenation, so $a b$ denotes $a \circ b$):
(A1.) $\pi\langle a, b\rangle=a$
(A2.) $\pi^{\prime}\langle a, b\rangle=b$
(A3.) $\left\langle\pi c, \pi^{\prime} c\right\rangle=c$
(A4.) $\epsilon\left\langle h^{*} \pi, \pi^{\prime}\right\rangle=h$
(A5.) $\left(\epsilon<k \pi, \pi^{\prime}>\right)^{*}=k$

1. Recall briefly what do these axioms refer to in a standard cartesian closed category? (observe that the type subscript is omitted since there exists only one element.)
2. sol If we had a cartesian closed category, π and π^{\prime} would be the projections, ϵ the evaluation mapping (for the exponential), and the star $(*)$ is the transposition.
1.'What's missing to have a full cartesian closed category?
1.' sol The terminal object.
3. Using the above axioms, prove the following consequences for all a, b, c, h, and k
(A6.) $\langle a, b\rangle c=\langle a c, b c\rangle$
(A6. sol) $\langle a, b\rangle c=\left\langle\pi\langle a, b\rangle c, \pi^{\prime}\langle a, b\rangle c\right\rangle=\langle a c, b c\rangle$
(A7.) $<\pi, \pi^{\prime}>=1$ by A3, A1 and A2.
(A7. sol) $<\pi, \pi^{\prime}>=<\pi 1, \pi^{\prime} 1>=1$ by the identity law and A3.
(A8.) $\epsilon\left\langle h^{*} a, b\right\rangle=h\langle a, b\rangle$
(A8. sol) $h<a, b>=\epsilon<h^{*} \pi, \pi^{\prime}><a, b>=\epsilon<h^{*} \pi<a, b>, \pi^{\prime}<a, b \gg=\epsilon<h^{*} a, b>$ by A4 then A6 and A1/A2.
(A9.) $h^{*} k=\left(h<k \pi, \pi^{\prime}>\right)^{*}$
(A9. sol) $\left(h<k \pi, \pi^{\prime}>\right)^{*}=\left(\epsilon<h^{*} \pi, \pi^{\prime}><k \pi, \pi^{\prime}>\right)^{*}=\left(\epsilon<h^{*} k \pi, \pi^{\prime}>\right)^{*}=h^{*} k$ by A4, A6, and A5
(A10.) $\epsilon^{*}=1$
(A10. sol) $1=\left(\epsilon<1 \pi, \pi^{\prime}>\right)^{*}=(\epsilon)^{*}$ by A5, A7, and A5
4. Like we did in cartesian closed categories, let $a \times b$ denote $<a \pi, b \pi^{\prime}>$ and $g^{f}=\left(g \epsilon<\pi, f \pi^{\prime}>\right)^{*}$. Prove the following
(A11.) $(a \times b)(c \times d)=a c \times b d$
(A11 sol) $(a \times b)(c \times d)=<a \pi, b \pi^{\prime}>(c \times d)=<a \pi(c \times d), b \pi^{\prime}(c \times d)>=<a c \pi, b d \pi^{\prime}>=a c \times b d$ (A12.) $g^{f} h=\left(g \epsilon<h \pi, f \pi^{\prime}>\right)^{*}$
(A12. sol) $g^{f} h=\left(g \epsilon<\pi, f \pi^{\prime}>\right)^{*} h=\left(g \epsilon<\pi, f \pi^{\prime}><h \pi, \pi^{\prime}>\right)^{*}=\left(g \epsilon<h \pi, f \pi^{\prime}>\right)^{*}$
(A13.) $g^{f} k^{h}=(g k)^{(h f)}$
(A13. sol) $g^{f} k^{h}=\left(g \epsilon<k^{h} \pi, f \pi^{\prime}>\right)^{*}=\left(g \epsilon<\left(k \epsilon<\pi \pi, h \pi^{\prime}>\right)^{*}, f \pi^{\prime}>\right)^{*}=\left(g k \epsilon<\pi \pi, h \pi^{\prime}><\right.$ $\left.1, f \pi^{\prime}>\right)^{*}=\left(g k \epsilon<\pi, h f \pi^{\prime}>\right)^{*}=(g k)^{(h f)}$

We can form a category of C-monoids where arrows are morphisms, called C-homomorphisms, that preserve the operations $\pi, \pi^{\prime},(-)^{*}$, and $<-,->^{*}$. Given a monoid \mathcal{M}, we can also form the polynomial C-monoid $\mathcal{M}[x]$ by the usual construction of universal algebra (like we did for cartesian closed category): the elements of $\mathcal{M}[x]$ are polynomials (or words) built up from x and the elements of \mathcal{M} using the Cmonoid operations modulo the axioms A1-A5. In particular the mapping $h: \mathcal{M} \rightarrow \mathcal{M}[x]$ which sends every elements of \mathcal{M} onto the corresponding constant polynomial in $\mathcal{M}[x]$ is a C-homomorphism.

C-monoids have also the property of functional completeness, that is for every polynomial $\varphi(x)$ in the indeterminate x, there exists a unique constant f in \mathcal{M} such that $f<\left(x \pi^{\prime}\right)^{*}, 1>=\varphi(x)$ in $\mathcal{M}[x]$.

Let $\rho_{x} \varphi(x)$ be defined inductively on the length of the word $\varphi(x)$ by
(i.) $\rho_{x} k=k \pi^{\prime}$ if k is a constant
(ii.) $\rho_{x} x=\epsilon$
(iii.) $\rho_{x}<\psi(x), \xi(x)>=<\rho_{x} \psi(x), \rho_{x} \xi(x)>$
(iv.) $\rho_{x}(\xi(x) \psi(x))=\rho_{x} \xi(x)<\pi, \rho_{x} \psi(x)>$
(v.) $\rho_{x}\left(\psi(x)^{*}\right)=\left(\rho_{x} \psi(x) \alpha\right)^{*}$
where $\alpha=<\pi \pi,<\pi^{\prime} \pi, \pi^{\prime} \gg$ (I am being a slightly informal with the equality here, since ideally, we would have used two different signs, one for identical words and one for the equality over equivalence classes; it won't matter much here, but it is good to keep it in mind).
4. As a consequence of functional completeness, prove that if $\varphi(x)$ is a polynomial in the indeterminate x over a C-monoid \mathcal{M}, then there exists a unique g in \mathcal{M} such that $g 乙 x=\varphi(x)$ where the binary operator ' 2 ' is as follows $g \imath a=\epsilon<g\left(a \pi^{\prime}\right)^{*}, 1>$.
4. sol The natural candidate for g would be the transpose of f in \mathcal{M}, that is f^{*}, where the existence of f is ensured by functional completeness. By A8, one therefore gets $g 2 x=f^{*} 2 x=\epsilon<$ $f^{*}\left(x \pi^{\prime}\right)^{*}, 1>=f<\left(x \pi^{\prime}\right)^{*}, 1>=\varphi(x)$.
5. Suppose one writes $\lambda_{x} \varphi(x)$ for $\left(\rho_{x} \varphi(x)\right)^{*}$, where ρ_{x} is as above (using the λ-calculus notation). Rephrase (4.) using λ_{x}.
5. sol When $\varphi(x)$ is a constant k in $\mathcal{M}, f=\rho_{x} k=k \pi^{\prime}$ which is in \mathcal{M}. Let's check. $\left(k \pi^{\prime}\right)<\left(x \pi^{\prime}\right)^{*}, 1>=$ $k=\varphi(x)$. When $\varphi(x)$ is a variable x, then $f=\rho_{x} x=\epsilon$ which is also in M for $\left.\epsilon<\left(x \pi^{\prime}\right)^{*}, 1\right\rangle=$ $\left(x \pi^{\prime}\right)\langle 1,1\rangle=x 1=x=\varphi(x)$ (by A8). When $\varphi(x)$ has the form $\langle\psi(x), \xi(x)\rangle$ and both $\psi(x)$ and $\xi(x)$ are of length 1 (either constants or variables), we set $f=<\rho_{x} \psi(x), \rho_{x} \xi(x)>$ which is also in \mathcal{M} since we've just seen that ρ_{x} is acting as a binder for x. One gets $<\rho_{x} \psi(x), \rho_{x} \xi(x)><$ $\left(x \pi^{\prime}\right)^{*}, 1>=<\rho_{x} \psi(x)<\left(x \pi^{\prime}\right)^{*}, 1>, \rho_{x} \xi(x)<\left(x \pi^{\prime}\right)^{*}, 1 \gg=<\psi(x), \xi(x)>=\varphi(x)$ as desired (the last equality holds because of the length of the operands and what we have just seen). Thus g is defined inductively as $f^{*}=\left(\rho_{x} \varphi(x)\right)^{*}$. This further gives $\varphi(x)=g 2 x=\left(\lambda_{x} \varphi(x)\right) 2 x$ (morally, one is applying the functional abstraction of $\varphi(x)$, which is $\lambda_{x} \varphi(x)$ to x to get, well, $\varphi(x)$). Likewise for the other cases, and by induction on the length of $\varphi(x)$ one gets the desired f for any $\varphi(x)$ (constructively!).
6. Use the universal property of $\mathcal{M}[x]$ to state the β reduction. (The universal property of $\mathcal{M}[x]$ says that for every C-homomorphism $f: \mathcal{M} \rightarrow \mathscr{B}$ and every element $B \in \mathscr{B}$, there exists a unique C-homomorphosm $f_{B}: \mathscr{M}[x] \rightarrow \mathscr{B}$ such that $f_{B} h=f$ and $f_{B}(x)=B$.)
6. sol We want to show that, for any element a of $M,\left(\lambda_{x} \varphi(x)\right) _a=\varphi(a)$. We just proved that $\left(\lambda_{x} \varphi(x)\right) \imath$ $x=\varphi(x)$.
The universal property of h with the identity over \mathcal{M} as f ensures the existence, for each element a of \mathcal{M} of a C-homomorphism $\left(1_{\mathcal{M}}\right)_{a}: \mathcal{M}[x] \rightarrow \mathcal{M}$ such that $\left(1_{\mathcal{M}}\right)_{a} h=1_{\mathcal{M}}$ and $\left(1_{\mathcal{M}}\right)_{a}(x)=a$ for every $a \in \mathcal{M}$. In particular, $\left(1_{\mathcal{M}}\right)_{a} \varphi(x)=\varphi(a)$ since $1_{\mathcal{M}}$ sends x to a and leaves the rest as is. Let $g=\lambda_{x} \varphi(x)$. We have $\left(1_{M}\right)_{a}(g \imath x)=\left(1_{M}\right)_{a}\left(\epsilon\left\langle g\left(x \pi^{\prime}\right)^{*}, 1\right\rangle\right)=\epsilon\left\langle g\left(a \pi^{\prime}\right)^{*}, 1\right\rangle=g \imath a$, and $\left(1_{\mathcal{M}}\right)_{a} \varphi(x)=\varphi(a)$. Since $g \imath x=\varphi(x)$, we get $g \imath a=\varphi(a)$ for all $a \in \mathcal{M}$.

An interesting feature of C-monoids is that they enjoy the following fixed point theorem.
7. Prove that for every polynomial $\varphi(x)$ in $\mathcal{M}[x]$, there exists an element $a \in \mathcal{M}$ such that $\varphi(a)=a$.
7. sol Let $a=\lambda_{x} \varphi(x \prec x)$. Then $a<a=\left(\lambda_{x} \varphi(x<x)\right)$) $a=\varphi(a \imath a)$. What's the meaning of $\varphi(x<x)$ here?
8. Do you think that a C-monoid can incorporate propositional logic? Comment.
8. sol Propositional logic has a unary negation operation that doesn't have a fixed point which contradicts the result we just proved.

Bonus B. Show that in any cartesian closed poset with joins $p \vee q$, the following law of IPC (Intuitionistic Propositional Calculus) holds

$$
((p \vee q) \Rightarrow r) \Rightarrow((p \Rightarrow r) \wedge(q \Rightarrow r))
$$

Generalize this result to an arbitrary category (not necessarily poset) by showing that there is always an arrow of the corresponding form.

Bonus BB. A functor $F: \mathscr{A} \rightarrow \mathscr{B}$ is essentially surjective on objects if for all $B \in \mathscr{B}$, there exists $A \in \mathscr{A}$ such that $F(A) \cong B$. Prove that a functor is an equivalence if and only if it is faithful, full, and essentially surjective on objects (restrict to small categories).

