Exam 2022-2023

Khalil Ghorbal

January 2023

We established a formal link between typed λ-calculi and cartesian closed categories (Curry-HowardLambek isomorphism). But what if we remove types? To which structure the pure (untyped) λ-calculus is isomorphic? Let's see!

Recall that a (small) category with one object is a monoid, that is a semigroup with a unitary element. (recall that small means that the class of morphisms between any two elements is a set. It is a technicality that you can drop in what follows.)
0. Describe a small closed cartesian category with only one object (elements and arrows are to be made explicit).

A C-monoid (for Curry or Cartesian) is a monoid \mathcal{M} that is almost a cartesian closed category in the sense that it enjoys similar structure. Technically \mathcal{M} has an extra structure $\left(\pi, \pi^{\prime}, \epsilon, *,<>\right)$, where π, π^{\prime}, and ϵ are elements (or nullary operations) of $\mathscr{M},(-)^{*}$ is a unary operation and $<-,->$ is a binary operation satisfying the following identities for all a, b, c, h, and k (where composition is denoted by simple concatenation, so $a b$ denotes $a \circ b$):
(A1.) $\pi<a, b\rangle=a$
(A2.) $\pi^{\prime}<a, b>=b$
(A3.) $<\pi c, \pi^{\prime} c>=c$
(A4.) $\epsilon<h^{*} \pi, \pi^{\prime}>=h$
(A5.) $\left(\epsilon<k \pi, \pi^{\prime}>\right)^{*}=k$

1. Recall briefly what do these axioms refer to in a standard cartesian closed category? (observe that the type subscript is omitted since there exists only one element.)
1.' What's missing to have a full cartesian closed category?
2. Using the above axioms, prove the following consequences (for all a, b, c, h, and k)
(A6.) $\langle a, b\rangle c=<a c, b c\rangle$
(A7.) $<\pi, \pi^{\prime}>=1$
(A8.) $\left.\left.\epsilon<h^{*} a, b\right\rangle=h<a, b\right\rangle$
(A9.) $h^{*} k=\left(h<k \pi, \pi^{\prime}>\right)^{*}$
(A10.) $\epsilon^{*}=1$
3. Like we did in cartesian closed categories, let $a \times b$ denote $<a \pi, b \pi^{\prime}>$ and $g^{f}=\left(g \epsilon<\pi, f \pi^{\prime}>\right)^{*}$. Prove the following
(A11.) $(a \times b)(c \times d)=a c \times b d$
(A12.) $g^{f} h=\left(g \epsilon<h \pi, f \pi^{\prime}>\right)^{*}$
(A13.) $g^{f} k^{h}=(g k)^{(h f)}$
We can form a category of C-monoids where arrows are morphisms, called C-homomorphisms, that preserve the operations $\pi, \pi^{\prime},(-)^{*}$, and $<-,->^{*}$. Given a monoid \mathcal{M}, we can also form the polynomial C-monoid $\mathcal{M}[x]$ by the usual construction of universal algebra (like we did for cartesian closed category): the elements of $\mathcal{M}[x]$ are polynomials (or words) built up from x and the elements of M using the Cmonoid operations modulo the axioms A1-A5. In particular the mapping $h: M \rightarrow M[x]$ which sends every elements of \mathcal{M} onto the corresponding constant polynomial in $\mathcal{M}[x]$ is a C-homomorphism.

C-monoids have also the property of functional completeness, that is for every polynomial $\varphi(x)$ in the indeterminate x, there exists a unique constant f in \mathcal{M} such that $f<\left(x \pi^{\prime}\right)^{*}, 1>=\varphi(x)$ in $\mathcal{M}[x]$.

Let $\rho_{x} \varphi(x)$ be defined inductively on the length of the word $\varphi(x)$ by
(i.) $\rho_{x} k=k \pi^{\prime}$ if k is a constant
(ii.) $\rho_{x} x=\epsilon$
(iii.) $\rho_{x}<\psi(x), \xi(x)>=<\rho_{x} \psi(x), \rho_{x} \xi(x)>$
(iv.) $\rho_{x}(\xi(x) \psi(x))=\rho_{x} \xi(x)<\pi, \rho_{x} \psi(x)>$
(v.) $\rho_{x}\left(\psi(x)^{*}\right)=\left(\rho_{x} \psi(x) \alpha\right)^{*}$
where $\alpha=<\pi \pi,<\pi^{\prime} \pi, \pi^{\prime} \gg$ (I am being a slight informal with the equalities here, since ideally, we would have used two different signs, one for identities over words and one equality over equivalence classes; it won't matter much here, but keep it in mind).
4. As a consequence of functional completness, prove that if $\varphi(x)$ is a polynomial in the indeterminate x over a C -monoid \mathcal{M}, then there exists a unique g in \mathcal{M} such that $g 乙 x=\varphi(x)$ where the binary operator ' 2 ' is as follows $g \imath a=\epsilon<g\left(a \pi^{\prime}\right)^{*}, 1>$.
5. Suppose one writes $\lambda_{x} \varphi(x)$ for $\left(\rho_{x} \varphi(x)\right)^{*}$, where ρ_{x} is as above (using the λ-calculus notation). Rephrase (4.) using λ_{x}.
6. Use the universal property of $\mathcal{M}[x]$ to state the β reduction. (The universal property of $\mathcal{M}[x]$ says that for every C-homomorphism $f: \mathscr{M} \rightarrow \mathscr{B}$ and every element $B \in \mathscr{B}$, there exists a unique C-homomorphosm $f_{B}: \mathcal{M}[x] \rightarrow B$ such that $f_{B} h=f$ and $f_{B}(x)=B$.)

An interesting feature of C-monoids is that they enjoy the following fixed point theorem.
7. Prove that for every polynomial $\varphi(x)$ in $\mathcal{M}[x]$, there exists an element $a \in \mathcal{M}$ such that $\varphi(a)=a$.
8. Do you think that a C-monoid can incorporate propositional logic? Comment.

Bonus B. Show that in any cartesian closed poset with joins $p \vee q$, the following law of IPC (Intuitionistic Propositional Calculus) holds

$$
((p \vee q) \Rightarrow r) \Rightarrow((p \Rightarrow r) \wedge(q \Rightarrow r))
$$

Generalize this result to an arbitrary category (not necessarily poset) by showing that there is always an arrow of the corresponding form.

Bonus BB. A functor $F: \mathscr{A} \rightarrow \mathscr{B}$ is essentially surjective on objects if for all $B \in \mathscr{B}$, there exists $A \in \mathscr{A}$ such that $F(A) \cong B$. Prove that a functor is an equivalence if and only if it is faithful, full, and essentially surjective on objects (restrict to small categories).

