Exam 2022-2023

Khalil Ghorbal

January 2023

We established a formal link between typed λ -calculi and cartesian closed categories (Curry-Howard-Lambek isomorphism). But what if we remove types? To which structure the pure (untyped) λ -calculus is isomorphic? Let's see!

Recall that a (small) category with one object is a monoid, that is a semigroup with a unitary element. (recall that small means that the class of morphisms between any two elements is a set. It is a technicality that you can drop in what follows.)

0. Describe a small closed cartesian category with only one object (elements and arrows are to be made explicit).

A C-monoid (for Curry or Cartesian) is a monoid \mathcal{M} that is almost a cartesian closed category in the sense that it enjoys similar structure. Technically \mathcal{M} has an extra structure ($\pi, \pi', \varepsilon, *, <>$), where π , π' , and ε are elements (or nullary operations) of \mathcal{M} , (-)* is a unary operation and < -, -> is a binary operation satisfying the following identities for all a, b, c, h, and k (where composition is denoted by simple concatenation, so ab denotes $a \circ b$):

(A1.) $\pi < a, b >= a$

(A2.)
$$\pi' < a, b >= b$$

(A3.)
$$< \pi c, \pi' c >= c$$

- (A4.) $\epsilon < h^*\pi, \pi' >= h$
- (A5.) $(\epsilon < k\pi,\pi'>)^* = k$
 - **1.** Recall briefly what do these axioms refer to in a standard cartesian closed category? (observe that the type subscript is omitted since there exists only one element.)
 - 1.' What's missing to have a full cartesian closed category?
 - 2. Using the above axioms, prove the following consequences (for all a, b, c, h, and k)
 - (A6.) < a, b > c = < ac, bc >(A7.) $< \pi, \pi' >= 1$ (A8.) $\epsilon < h^*a, b >= h < a, b >$ (A9.) $h^*k = (h < k\pi, \pi' >)^*$ (A10.) $\epsilon^* = 1$
 - 3. Like we did in cartesian closed categories, let $a \times b$ denote $\langle a\pi, b\pi' \rangle$ and $g^f = (g\epsilon \langle \pi, f\pi' \rangle)^*$. Prove the following
 - (A11.) $(a \times b)(c \times d) = ac \times bd$
 - (A12.) $g^f h = (g\epsilon < h\pi, f\pi' >)^*$

(A13.) $g^f k^h = (gk)^{(hf)}$

We can form a category of C-monoids where arrows are morphisms, called C-homomorphisms, that preserve the operations π , π' , $(-)^*$, and $< -, ->^*$. Given a monoid \mathcal{M} , we can also form the polynomial C-monoid $\mathcal{M}[x]$ by the usual construction of universal algebra (like we did for cartesian closed category): the elements of $\mathcal{M}[x]$ are polynomials (or words) built up from x and the elements of \mathcal{M} using the Cmonoid operations modulo the axioms A1–A5. In particular the mapping $h : \mathcal{M} \to \mathcal{M}[x]$ which sends every elements of \mathcal{M} onto the corresponding constant polynomial in $\mathcal{M}[x]$ is a C-homomorphism.

C-monoids have also the property of functional completeness, that is for every polynomial $\varphi(x)$ in the indeterminate x, there exists a unique constant f in \mathcal{M} such that $f < (x\pi')^*, 1 \ge \varphi(x)$ in $\mathcal{M}[x]$.

Let $\rho_x \varphi(x)$ be defined inductively on the length of the word $\varphi(x)$ by

- (i.) $\rho_x k = k\pi'$ if k is a constant
- (ii.) $\rho_x x = \epsilon$
- (iii.) $\rho_x < \psi(x), \xi(x) > = < \rho_x \psi(x), \rho_x \xi(x) >$
- (iv.) $\rho_x(\xi(x)\psi(x)) = \rho_x\xi(x) < \pi, \rho_x\psi(x) >$

(v.)
$$\rho_x(\psi(x)^*) = (\rho_x\psi(x)\alpha)^*$$

where $\alpha = \langle \pi \pi, \langle \pi' \pi, \pi' \rangle \rangle$ (I am being a slight informal with the equalities here, since ideally, we would have used two different signs, one for identities over words and one equality over equivalence classes; it won't matter much here, but keep it in mind).

- 4. As a consequence of functional completness, prove that if φ(x) is a polynomial in the indeterminate x over a C-monoid M, then there exists a unique g in M such that g ≥ x = φ(x) where the binary operator 'ζ' is as follows g ≥ a = ε < g(aπ')*, 1 >.
- 5. Suppose one writes $\lambda_x \varphi(x)$ for $(\rho_x \varphi(x))^*$, where ρ_x is as above (using the λ -calculus notation). Rephrase (4.) using λ_x .
- 6. Use the universal property of $\mathcal{M}[x]$ to state the β reduction. (The universal property of $\mathcal{M}[x]$ says that for every C-homomorphism $f : \mathcal{M} \to \mathcal{B}$ and every element $B \in \mathcal{B}$, there exists a unique C-homomorphosm $f_B : \mathcal{M}[x] \to B$ such that $f_B h = f$ and $f_B(x) = B$.)

An interesting feature of C-monoids is that they enjoy the following fixed point theorem.

- 7. Prove that for every polynomial $\varphi(x)$ in $\mathcal{M}[x]$, there exists an element $a \in \mathcal{M}$ such that $\varphi(a) = a$.
- 8. Do you think that a C-monoid can incorporate propositional logic? Comment.

Bonus B. Show that in any cartesian closed poset with joins $p \lor q$, the following law of IPC (Intuitionistic Propositional Calculus) holds

$$((p \lor q) \Rightarrow r) \Rightarrow ((p \Rightarrow r) \land (q \Rightarrow r))$$

Generalize this result to an arbitrary category (not necessarily poset) by showing that there is always an arrow of the corresponding form.

Bonus BB. A functor $F : \mathcal{A} \to \mathcal{B}$ is *essentially surjective on objects* if for all $B \in \mathcal{B}$, there exists $A \in \mathcal{A}$ such that $F(A) \cong B$. Prove that a functor is an equivalence if and only if it is faithful, full, and essentially surjective on objects (restrict to small categories).