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Pick up at least two out of the three proposed problems below according to your taste. If you en-
joyed the mindset of Category theory, check out Problem 1, it has it all. If, however, you don’t really
care whether every monad arises from an adjunction, Problem 2 might be more suited as it manipulates
deductive systems: all you need is a firm logician hat. Finally, if you are more language-oriented, you
can chew on the (untyped) constructions of Problem 3. This being said, keep in mind that the three sug-
gested problems are part of the same story. The more you appreciate this fact, the more enlightened and
powerful you will be, regardless of the next steps of your curriculum.

Stay focused. Clear your thoughts. Enjoy the dive.
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1 Functional Completeness as a Universality Property

A comonad on a category A is a monad in the opposite category A𝑜𝑝, that is a cotriple (𝑆, 𝜀, 𝛿), where
𝑆 ∶ A→ A is a functor equipped with a counit and a co-multiplication satisfying the associativity and
identity laws (needless to say that 𝜀 and 𝛿 are natural transformations). As we did for monads, we can
define the Kleisli category A𝑆 of a comonad (𝑆, 𝜀, 𝛿) on Awith morphisms 𝐴 → 𝐵 in A𝑆 whenever
𝑆𝐴→ 𝐵 is a morphism in A (everything else is like we’ve seen but with inverting the arrows).

1. State explicitly the associativity and identity laws for a comonad (three diagrams are expected.)

2. State explicitly the identity arrows and composition of morphisms in A𝑆 (a diagram is expected
for the composition).

1.sol
𝑆◦𝑆◦𝑆 𝑆◦𝑆

𝑆◦𝑆 𝑆

𝑆𝛿

𝛿𝑆

𝛿

𝛿

𝑆 𝑆◦𝑆

𝑆

𝑆𝜀

𝛿
1𝑆

𝑆 𝑆◦𝑆

𝑆

𝜀𝑆

𝛿
1𝑆

2.sol The identity arrow 1𝐴 ∶ 𝐴 ↠ 𝐴 is defined as 𝜀𝐴 ∶ 𝑆𝐴 → 𝐴. Two morphisms 𝑓 ∶ 𝐴 ↠ 𝐵 and
𝑔 ∶ 𝐵 ↠ 𝐶 are composed as 𝑔◦𝑆𝑓◦𝛿𝐴 :

𝑆𝑆𝐴

𝑆𝐵 𝑆𝐴

𝐶 𝐵

𝑆𝑓

𝑔
𝑓

𝛿𝐴

Let Abe a Cartesian category where 𝜋𝐴,𝐵 and 𝜋′𝐴,𝐵 denote the projections out of the product 𝐴 × 𝐵
of 𝐴,𝐵 ∈ A. We use ⟨𝑓, 𝑔⟩ to denote the pairing of 𝑓 and 𝑔, that is the unique map 𝐶 → 𝐴 × 𝐵 where
𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵.

For any object𝐴 in A, define 𝑆𝐴 ∶= 𝐴×−, 𝜀𝐴(𝐵) ∶= 𝜋′𝐴,𝐵, 𝛿𝐴(𝐵) ∶= ⟨𝜋𝐴,𝐵, 1𝐴×𝐵⟩ (for clarity,
we used 𝜀𝐴(𝐵) and 𝛿𝐴(𝐵) instead of (𝜀𝐴)𝐵 and (𝛿𝐴)𝐵 to avoid double subscripts).

3. Show that (𝑆𝐴, 𝜀𝐴, 𝛿𝐴) defines a cotriple of A. We will denote A𝑆𝐴 , or simply A𝐴, the Kleisli
category of the comonad (𝑆𝐴, 𝜀𝐴, 𝛿𝐴) on A.

3.sol 𝐴 is a fixed object of A. 𝑆𝐴 is a functor, so it is also defined on arrows of 𝐴. Let 𝑓 ∶ 𝐵 → 𝐶 , then
𝑆𝐴𝑓 = ⟨𝜋𝐴,𝐵, 𝑓◦𝜋′𝐴,𝐵⟩. We check that 𝜀𝐴 is a counit, that is a natural transformation 𝑆 → 1A. Let
𝐵,𝐶 ∈ A, 𝑓 ∶ 𝐵 → 𝐶 , by construction of the pairing 𝜋′𝐴,𝐶◦𝑆𝐴𝑓 = 𝑓◦𝜋′𝐴,𝐵, thus the following
diagram commutes

𝑆𝐴𝐵 𝑆𝐴𝐶

𝐵 𝐶

𝑆𝐴𝑓

𝜀𝐴(𝐵) 𝜀𝐴(𝐶)

𝑓

=
𝐴 × 𝐵 𝐴 × 𝐶

𝐵 𝐶

𝑆𝐴𝑓

𝜋′𝐴,𝐵 𝜋′𝐴,𝐶

𝑓

and since 𝑆𝐴𝑆𝐴𝑓 = ⟨𝜋𝐴,𝐴×𝐵, (𝑆𝐴𝑓 )◦𝜋′𝐴,𝐴×𝐵⟩, the following diagram commutes as well

𝑆𝐴𝐵 𝑆𝐴𝐶

𝑆𝐴𝑆𝐴𝐵 𝑆𝐴𝑆𝐴𝐶

𝑆𝐴𝑓

𝛿𝐴(𝐵) 𝛿𝐴(𝐶)

𝑆𝐴𝑆𝐴𝑓
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Let A[𝑥] denote the polynomial category defined over A assuming the undetermined 𝑥 ∶ 𝐴0 → 𝐴.
Let 𝐻𝑥 ∶ A→ A[𝑥] denote the Cartesian functor that sends 𝑓 ∶ 𝐴 → 𝐵 onto the constant polynomial
with the same name in A[𝑥] (in words, 𝐻𝑥 defines a trivial injection that regards constants as polynomi-
als). The functional completeness can be rephrased as the following universality property for𝐻𝑥. Given
a Cartesian category A, any Cartesian functor 𝐹 ∶ A→ B and any arrow 𝑦 ∶ 𝐹 (𝐴0) → 𝐹 (𝐴) in B,
there exists a unique Cartesian functor 𝐹 ′ ∶ A[𝑥] → B such that 𝐹 ′(𝑥) = 𝑦 and 𝐹 ′◦𝐻𝑥 = 𝐹 ′𝐻𝑥 = 𝐹 .
(The proof of this statement is very similar to—if not the same as—the proof of the deductive theorem
deconstructed in Section 2). We will use this universality property to show (with elegance) that the poly-
nomial category A[𝑥] is isomorphic to the Kleisly category A𝐴 (𝐴 and 𝑥 are indeed related since 𝐴 is
the codomain of 𝑥).

4. Show that A𝐴 is a Cartesian category. (You need to show that a product exists in A𝐴, and a product
is not a mere isolated object, that is you need to explicit the projections and maps to the terminal
object—as a special case of the product of zero elements).

4.sol A is a Cartesian category, thus there is already a product 𝐵 × 𝐶 . All we need to exhibit are
the projections in A𝐴 from 𝐵 × 𝐶 to 𝐵 and 𝐶 . The natural candidates are 𝜋𝐵,𝐶◦𝜀𝐴(𝐵 × 𝐶) and
𝜋′𝐵,𝐶◦𝜀𝐴(𝐵 × 𝐶). The unique map in A𝐴 from 𝐵 × 𝐶 to 1, the terminal object of Awould be the
unique map in A from 𝐴 × 𝐵 × 𝐶 to 1. Thus A𝐴 is a Cartesian category.

Define the functor 𝐻𝐴 ∶ A → A𝐴 by 𝐻𝐴(𝐵) = 𝐵 and 𝐻𝐴(𝑓 ) = 𝑓𝜋′𝐴,𝐶 for objects 𝐵 and arrows
𝑓 ∶ 𝐶 → 𝐵.

5. Check that 𝐻𝐴 is a Cartesian functor.

6. Assume that 𝐻𝐴 enjoys the same universality property of 𝐻𝑥 with 𝜋𝐴,1 as the undetermined 𝑥.
Prove that A[𝑥] is isomorphic to A𝐴. (Even if you know nothing about polynomial categories and
monads, you should be able to prove this just by exploiting universality.)

5.sol We need to check that𝐻𝐴 preserves the Cartesian structure. It’s clear that𝐻𝐴(𝐵×𝐶) = 𝐻𝐴(𝐵)×
𝐻𝐴(𝐶), we check below that projection maps and the pairing are preserved as expected. For the
map (and objects) 𝜋𝐵,𝐶 ∶ 𝐵×𝐶 → 𝐵, one gets𝐻𝐴(𝜋𝐵,𝐶 ) ∶ 𝐻𝐴(𝐵×𝐶) ↠ 𝐻𝐴(𝐵), or equivalently
𝜋𝐵,𝐶𝜋′𝐴,𝐵×𝐶 ∶ 𝐴 × 𝐵 × 𝐶 → 𝐵 which is equal to 𝜋𝐵,𝐶 in A𝐴. For pairing, we need to show that
a pairing ⟨𝑓, 𝑔⟩ ∶ 𝐷 → 𝐵 × 𝐶 is transformed via 𝐻𝐴 to the pairing ⟨𝐻𝐴(𝑓 ),𝐻𝐴(𝑔)⟩ in A𝐴 or
equivalently to ⟨𝑓𝜋′𝐴,𝐷, 𝑔𝜋

′
𝐴,𝐷⟩ in Awhich holds by definition of 𝐻𝐴.

6.sol To prove that A[𝑥] is isomorphic to A𝐴 we use twice the universality property as follows. First use
A𝐴 as B and 𝐻𝐴 as 𝐹 , then there exists a unique functor 𝐻 ′

𝐴 ∶ A[𝑥] → A𝐴 such that 𝐻 ′
𝐴𝐻𝑥 =

𝐻𝐴. Then use A[𝑥] as B and 𝐻𝑥 as 𝐹 , then there exists a unique functor 𝐻 ′
𝑥 ∶ A𝐴 → A[𝑥] such

that 𝐻 ′
𝑥𝐻𝐴 = 𝐻𝑥. Thus 𝐻 ′

𝐴𝐻
′
𝑥𝐻𝐴 = 𝐻 ′

𝐴𝐻𝑥 = 𝐻𝐴 and 𝐻 ′
𝑥𝐻

′
𝐴𝐻𝑥 = 𝐻 ′

𝑥𝐻𝐴 = 𝐻𝑥. But then
the functors 1A𝐴 and 1A[𝑥] satisfy respectively 1A𝐴𝐻𝐴 = 𝐻𝐴 and 1A[𝑥]𝐻𝑥 = 𝐻𝑥. By uniqueness
𝐻 ′
𝐴𝐻

′
𝑥 = 1A𝐴 and 𝐻 ′

𝑥𝐻
′
𝐴 = 1A[𝑥]. In short, two objects that verify the same universality property

are isomorphic.

Bonus (prove that𝐻𝐴 has indeeded the assumed universality property). Let 𝐹 ∶ A→ Bdenote a Carte-
sian functor and 𝑦 ∶ 1 → 𝐹 (𝐴) a given arrow in B. We show constructively the existence of a unique
Cartesian functor𝐹 ′ ∶ A𝐴 → B that satisfies the desired properties, that is𝐹 ′𝐻𝐴 = 𝐹 and𝐹 ′(𝜋𝐴,𝑎) = 𝑦.
Let 𝐹 ′ be defined on objects and arrows as 𝐹 ′(𝐵) = 𝐹𝐵 and 𝐹 ′(𝑓 ) = 𝐹 (𝑓 )⟨𝑦𝐹 (𝐵)∙, 1𝐹 (𝐵)⟩, where
𝐹 (𝐵)∙ ∶ 𝐹 (𝐵) → 1.

7a. Check that 𝐹 ′ is Cartesian.

7b. Check that it satisfies the desired properties.

7c. Prove uniqueness.
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2 Deduction Theorem

The standard (and simpler) form of the deduction theorem asserts that if 𝐴∧𝐵 → 𝐶 then 𝐴→ (𝐶 ⇐ 𝐵)
(you probably already encountered a similar statement where arrows are denoted by ⊢, reads “entails”).
However, as soon as one adjoins an assumption 𝑥 ∶ 𝐓 → 𝐴 (that is a proof 𝑥 for the formula 𝐴), one
obtains a new deductive system D(𝑥) on which we stated the general form of the deduction theorem. In
what follows, you will be guided to prove the theorem for positive intuitionistic propositional calculus.
(This is a very general scheme for many proofs in formal languages and abstract algebras.)

1. You may (or may not!) have noticed a circular argument in introducing the ‘if’ operator ⇐ since
we also used a sort of ‘if ... then ... ’ construction (via the inference rule) to introduce ⇐. (This is
sometimes called the Zeno paradox of logic). How did we solve this issue?

2. What are the (three) primitive operators on proofs in D(𝑥)?

3. Let 𝜑(𝑥) denote a proof 𝐵 → 𝐶 in D(𝑥) where 𝑥 ∶ 𝐓 → 𝐴. Deconstruct 𝜑(𝑥) using pairing and
do the same for transposition. (Bonus: make explicit the five possible forms for 𝜑(𝑥)).

4. For pairing and transposition, construct an explicit proof 𝑓 (𝑥) ∶ 𝐴 ∧𝐵 → 𝐶 . Here is an example:
if 𝑝 ∶ 𝐵 → 𝐶 is a proof in D (which is therefore independent from 𝑥), then 𝑓 = 𝑝◦𝜋′𝐴,𝐵 (which
is also independent from 𝑥). We can also write 𝑓 using the 𝜆-abstraction 𝜆𝑥∶𝐴𝑝. Feel free to use
similar notations.

5. Observe that 𝑓 (𝑥), through the primitive operators, deconstructs 𝜑(𝑥) into shorter proofs. We
can make this intuition precise by defining an inductive notion of length on proofs: for instance if
𝑝 ∶ 𝐵 → 𝐶 exists already in D, then 𝜑(𝑥) has length 0 (the constant polynomial). What is the
length of a proof pairing two proofs of lengths 𝑛, 𝑚 ≥ 0?

6. Sketch a proof by induction for the deduction theorem (in D(𝑥)) (outline the main steps based on
your previous answers).

7. Bonus: What is the missing ingredient in order to state functional completeness in the correspond-
ing Cartesian closed category of D(𝑥)?

1.sol Both constructions, while similar, do not operate at the same level. The ‘if’ operator decorates ob-
jects (propositions) of the deductive system (you can think of these objects as knowledge), whereas
the inference rules are the proofs of those propositions, so as if we are encoding, within the same
system, the fact that we can prove something. The inference rule is therefore regarded as the meta-
level of knowledge, or how to saturate the system with new facts from known ones. This is very
similar of talking about the set of functions between two sets as a set itself!

2.sol pairing, conjunction (or product) and transposition.

3.sol The five forms are (i) Constant. 𝜑(𝑥) = 𝑘where 𝑘 ∶ 𝐵 → 𝐶 is (already) a proof in D, (ii) Variable.
𝜑(𝑥) = 𝑥 with 𝐵 = 𝐓 and 𝐶 = 𝐴, (iii) Pairing. 𝜑(𝑥) = ⟨𝜓(𝑥), 𝜉(𝑥)⟩ where 𝜓(𝑥) ∶ 𝐵 → 𝐶 ′ and
𝜉(𝑥) ∶ 𝐵 → 𝐶 ′′, 𝐶 = 𝐶 ′ ∧ 𝐶 ′′, (iv) Product. 𝜑(𝑥) = 𝜓(𝑥)𝜉(𝑥), where 𝜓(𝑥) ∶ 𝐵 → 𝐷 and
𝜉(𝑥) ∶ 𝐷 → 𝐶 , and finally (v) Transposition. 𝜑(𝑥) = 𝜉(𝑥), where 𝜉(𝑥) ∶ 𝐵 ∧ 𝐶 ′ → 𝐶 ′′, and
𝐶 = 𝐶 ′′ ⇐ 𝐶 ′

4.sol For pairing (case (iii) above), it suffices to construct 𝜓(𝑥)𝜋′𝐴,𝐵 ∶ 𝐴 ∧ 𝐵 → 𝐶 ′ and 𝜉(𝑥)𝜋′𝐴,𝐵 ∶
𝐴 ∧ 𝐵 → 𝐶 ′′, so that the pairing 𝑓 (𝑥) = ⟨𝜓(𝑥)𝜋′𝐴,𝐵, 𝜉(𝑥)𝜋

′
𝐴,𝐵⟩ gives a proof 𝐴 ∧ 𝐵 → 𝐶 ′ ∧ 𝐶 ′′

(recall that 𝐶 = 𝐶 ′ ∧ 𝐶 ′′). For the product (case (iv) above), 𝑓 (𝑥) = 𝜓(𝑥)𝜉(𝑥)𝜋′𝐴,𝐵. Finally, for
transposition (case (v) above), 𝑓 (𝑥) = 𝜉(𝑥)𝜋′𝐴,𝐵∧𝐶 ′ .
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5.sol The length of a proof can be defined inductively: the length is zero for cases (i) and (ii), it is the
sum of the lengths of 𝜉(𝑥) and 𝜓(𝑥) plus 1 in cases (iii) and (iv) and the length of 𝜉(𝑥) plus 1 in
case (v).

6.sol The proof is by induction on the length of the proof. One starts by𝜙(𝑥), and decompose it following
one of the 5 cases detailed above, then in each subcase, the proof decomposes again, at each step
the length is strictly decreasing; thus the process ends after finitely many steps and the final proof
has no 𝑥 in it.

3 Church’s Numerals

Recall that the untyped 𝜆-calculus is defined inductively by 𝑡 ∶∶= 𝑥 ∣ 𝑡 ≀ 𝑡′ ∣ 𝜆𝑥.𝑡. For simplicity, we will
use concatenation to encode ≀, so that we write 𝑡𝑡′ for 𝑡 ≀ 𝑡′. Church defined some sort of natural numbers,
called numerals, using the untyped 𝜆-calculus as follows. First, he introduced the operator ⋆ on 𝜆-terms
𝑡 ⋆ 𝑡′ ∶= 𝜆𝑥.(𝑡(𝑡′𝑥)) .. Then, he went on defining

0 ∶= 𝜆𝑥.(𝜆𝑥.𝑥), 1 ∶= 𝜆𝑥.𝑥, 2 ∶= 𝜆𝑥.(𝑥 ⋆ 𝑥),…

so that 1𝑓 = 𝑓 , 2𝑓 = 𝑓 ⋆ 𝑓 , etc. as if a numeral 𝑛 encodes the process of applying the ⋆ operator 𝑛
times to its argument 𝑓 .

1. What is 0𝑓? Is it expected? Comment.

2. What does the ⋆ operator encode as a standard operation on natural numbers?

3. What does 𝜆𝑥(𝑥 ⋆ (𝑛𝑥)) represent for a numeral 𝑛? (Hint: think of the basic ingredients you need
to define a natural number object).

4. How can you encode exponentiation of natural numbers?

5. Bonus: Write the sum of two numerals as a 𝜆-term.

1.sol Applying 0 to 𝑓 gives 𝜆𝑥.𝑥 which is 1. Here numerals are defined using a binary operator, the ⋆.
Recall that the product of zero operands has a sense and corresponds to the terminal object, often
denoted 1... what a coincidence! At this point, you should already have guessed the answer to the
next question.

2.sol The star operator is exactly the multiplication, indeed we can define 𝑛 × 𝑚 as 𝑛 ⋆ 𝑚.

3.sol 𝜆𝑥(𝑥 ⋆ (𝑛𝑥)) encodes precisely the successor of the numeral 𝑛, which is indeed essential in any
natural numbers system.

4.sol Using concatenation, one encodes 𝑚𝑛 as 𝑛𝑚 (the latter is not the product of 𝑚 and 𝑛, but the
concatenation in the 𝜆-calculus; We could have written it as 𝑛 ≀ 𝑚).

So you might think that, since numerals behave like natural numbers, there is a built-in ‘type’ (pre-
cisely the one for natural numbers) that comes for free in an untyped 𝜆-calculus... let’s push this further
yet before concluding.

1. Suppose that 𝑥 has type 𝐴 in the definition of ⋆, what would be the type of 𝑛 and 𝑚 in 𝑛 ⋆ 𝑚?

2. Is this type coherent with the product of two numerals? What about exponentiation of numerals?

3. State under which extra condition on the type 𝐴 all numerals would have the same type. (So after
all, numerals aren’t really natural numbers...)

5



1.sol If 𝑥 has type 𝐴, then (𝑛⋆𝑚)𝑥 = 𝑛(𝑚𝑥), since we expect 𝑛 and 𝑚 to have the same type, both 𝑛 and
𝑚 must be typed 𝐴𝐴. Denote 𝐴𝐴 by 𝐵.

2.sol If𝑚 is typed𝐵, then for 𝑛𝑚 to make sense, 𝑛must be typed𝐵𝐵. Indeed, the concatenation encodes
the exponentiation of numerals and should therefore has the same type 𝐵.

3.sol We thus end up requiring 𝐵 to be the same as 𝐵𝐵. But this is clearly not true in general. Numerals
cannot have the same type unless, they are typed with a special type satisfying 𝐵𝐵 = 𝐵.
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